BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34899193)

  • 1. Innovative Therapeutic Approaches for Huntington's Disease: From Nucleic Acids to GPCR-Targeting Small Molecules.
    Komatsu H
    Front Cell Neurosci; 2021; 15():785703. PubMed ID: 34899193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of the First Druggable GPR52 Antagonist to Treat Huntington's Disease.
    Komatsu H
    J Med Chem; 2021 Jan; 64(2):938-940. PubMed ID: 33443413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput virtual screening of potential inhibitors of GPR52 using docking and biased sampling method for Huntington's disease therapy.
    Gupta H; Sahi S
    Mol Divers; 2023 Dec; ():. PubMed ID: 38038795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease.
    Tabrizi SJ; Ghosh R; Leavitt BR
    Neuron; 2019 Mar; 101(5):801-819. PubMed ID: 30844400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPR52 Antagonist Reduces Huntingtin Levels and Ameliorates Huntington's Disease-Related Phenotypes.
    Wang C; Zhang YF; Guo S; Zhao Q; Zeng Y; Xie Z; Xie X; Lu B; Hu Y
    J Med Chem; 2021 Jan; 64(2):941-957. PubMed ID: 33185430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic Acid Therapeutics in Huntington's Disease.
    Singh K; Roy I
    Recent Pat Biotechnol; 2019; 13(3):187-206. PubMed ID: 30747088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic reversal of Huntington's disease by in vivo self-assembled siRNAs.
    Zhang L; Wu T; Shan Y; Li G; Ni X; Chen X; Hu X; Lin L; Li Y; Guan Y; Gao J; Chen D; Zhang Y; Pei Z; Chen X
    Brain; 2021 Dec; 144(11):3421-3435. PubMed ID: 34918046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrin-Based Nanoparticles for Delivery of Antisense Oligonucleotides Targeting Huntingtin.
    Mendonça MCP; Sun Y; Cronin MF; Lindsay AJ; Cryan JF; O'Driscoll CM
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translating Antisense Technology into a Treatment for Huntington's Disease.
    Lane RM; Smith A; Baumann T; Gleichmann M; Norris D; Bennett CF; Kordasiewicz H
    Methods Mol Biol; 2018; 1780():497-523. PubMed ID: 29856033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease.
    Cheng Y; Zhang S; Shang H
    J Transl Int Med; 2024 Apr; 12(2):134-147. PubMed ID: 38779119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lowering Mutant Huntingtin Using Tricyclo-DNA Antisense Oligonucleotides As a Therapeutic Approach for Huntington's Disease.
    Imbert M; Blandel F; Leumann C; Garcia L; Goyenvalle A
    Nucleic Acid Ther; 2019 Oct; 29(5):256-265. PubMed ID: 31184975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes.
    Song H; Li H; Guo S; Pan Y; Fu Y; Zhou Z; Li Z; Wen X; Sun X; He B; Gu H; Zhao Q; Wang C; An P; Luo S; Hu Y; Xie X; Lu B
    Brain; 2018 Jun; 141(6):1782-1798. PubMed ID: 29608652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis.
    Onur TS; Laitman A; Zhao H; Keyho R; Kim H; Wang J; Mair M; Wang H; Li L; Perez A; de Haro M; Wan YW; Allen G; Lu B; Al-Ramahi I; Liu Z; Botas J
    Elife; 2021 Apr; 10():. PubMed ID: 33871358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat.
    Gagnon KT; Pendergraff HM; Deleavey GF; Swayze EE; Potier P; Randolph J; Roesch EB; Chattopadhyaya J; Damha MJ; Bennett CF; Montaillier C; Lemaitre M; Corey DR
    Biochemistry; 2010 Nov; 49(47):10166-78. PubMed ID: 21028906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Clinical Therapies for Huntington's Disease and the Promise of Multi-Targeted/Functional Drugs Based on Clinicaltrials.gov.
    Huang C; Zheng X; Yan S; Zhang Z
    Clin Pharmacol Ther; 2024 Jun; ():. PubMed ID: 38863261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic strategies for Huntington's disease.
    Estevez-Fraga C; Flower MD; Tabrizi SJ
    Curr Opin Neurol; 2020 Aug; 33(4):508-518. PubMed ID: 32657893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Huntingtin Lowering Strategies.
    Marxreiter F; Stemick J; Kohl Z
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging therapies in Huntington's disease.
    Bashir H
    Expert Rev Neurother; 2019 Oct; 19(10):983-995. PubMed ID: 31181964
    [No Abstract]   [Full Text] [Related]  

  • 19. Drugging unconventional targets: insights from Huntington's disease.
    Yu S; Liang Y; Palacino J; Difiglia M; Lu B
    Trends Pharmacol Sci; 2014 Feb; 35(2):53-62. PubMed ID: 24388390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy.
    Carbo M; Brandi V; Pascarella G; Staid DS; Colotti G; Polticelli F; Ilari A; Morea V
    Int J Mol Med; 2019 Dec; 44(6):2223-2233. PubMed ID: 31638189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.