BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34899196)

  • 1. Locomotion Control With Frequency and Motor Pattern Adaptations.
    Thor M; Strohmer B; Manoonpong P
    Front Neural Circuits; 2021; 15():743888. PubMed ID: 34899196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error-Based Learning Mechanism for Fast Online Adaptation in Robot Motor Control.
    Thor M; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2042-2051. PubMed ID: 31395565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generic Neural Locomotion Control Framework for Legged Robots.
    Thor M; Kulvicius T; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory feedback in CNN-based central pattern generators.
    Arena P; Fortuna L; Frasca M; Patane L
    Int J Neural Syst; 2003 Dec; 13(6):469-78. PubMed ID: 15031855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of sensory feedbacks in rowat-selverston CpG to improve robot legged locomotion.
    Amrollah E; Henaff P
    Front Neurorobot; 2010; 4():113. PubMed ID: 21228904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning.
    Ouyang W; Chi H; Pang J; Liang W; Ren Q
    Front Neurorobot; 2021; 15():627157. PubMed ID: 33574748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
    Dasgupta S; Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():10. PubMed ID: 26441629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Learning Event Mistiming Detector Based on Central Pattern Generator.
    Szadkowski R; Prágr M; Faigl J
    Front Neurorobot; 2021; 15():629652. PubMed ID: 33613224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.