These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 34899220)

  • 21. A BCI painting system using a hybrid control approach based on SSVEP and P300.
    Tang Z; Wang X; Wu J; Ping Y; Guo X; Cui Z
    Comput Biol Med; 2022 Nov; 150():106118. PubMed ID: 36166987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 25. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine.
    Yeh CL; Lee PL; Chen WM; Chang CY; Wu YT; Lan GY
    Biomed Eng Online; 2013 May; 12():46. PubMed ID: 23692974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A classification algorithm of an SSVEP brain-Computer interface based on CCA fusion wavelet coefficients.
    Ma P; Dong C; Lin R; Ma S; Jia T; Chen X; Xiao Z; Qi Y
    J Neurosci Methods; 2022 Apr; 371():109502. PubMed ID: 35151665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods.
    Chailloux Peguero JD; Hernández-Rojas LG; Mendoza-Montoya O; Caraza R; Antelis JM
    Front Neurosci; 2023; 17():1142892. PubMed ID: 37274188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 30. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A speedy hybrid BCI spelling approach combining P300 and SSVEP.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):473-83. PubMed ID: 24058009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear.
    Liang L; Bin G; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34875637
    [No Abstract]   [Full Text] [Related]  

  • 33. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of SSVEP-EEG signals using CNN and Red Fox Optimization for BCI applications.
    Bhuvaneshwari M; Grace Mary Kanaga E; George ST
    Proc Inst Mech Eng H; 2023 Jan; 237(1):134-143. PubMed ID: 36398685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of inter-stimulus intervals on concurrent P300 and SSVEP features for hybrid brain-computer interfaces.
    Han J; Liu C; Chu J; Xiao X; Chen L; Xu M; Ming D
    J Neurosci Methods; 2022 Apr; 372():109535. PubMed ID: 35202615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 40. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.