These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34899220)

  • 41. How Visual Stimuli Evoked P300 is Transforming the Brain-Computer Interface Landscape: A PRISMA Compliant Systematic Review.
    Kalra J; Mittal P; Mittal N; Arora A; Tewari U; Chharia A; Upadhyay R; Kumar V; Longo L
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1429-1439. PubMed ID: 37027569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel hybrid BCI speller based on RSVP and SSVEP paradigm.
    Jalilpour S; Hajipour Sardouie S; Mijani A
    Comput Methods Programs Biomed; 2020 Apr; 187():105326. PubMed ID: 31980276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores.
    Yin E; Zeyl T; Saab R; Chau T; Hu D; Zhou Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):693-701. PubMed ID: 25706721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Canonical Correlation Analysis-Based Transfer Learning Framework for Enhancing the Performance of SSVEP-Based BCIs.
    Wei Q; Zhang Y; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2809-2821. PubMed ID: 37342949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs.
    Zerafa R; Camilleri T; Falzon O; Camilleri KP
    J Neural Eng; 2018 Oct; 15(5):051001. PubMed ID: 29869996
    [TBL] [Abstract][Full Text] [Related]  

  • 48. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Electric Wheelchair Manipulating System Using SSVEP-Based BCI System.
    Chen W; Chen SK; Liu YH; Chen YJ; Chen CS
    Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI.
    Li P; Su J; Belkacem AN; Cheng L; Chen C
    Front Neurosci; 2022; 16():971039. PubMed ID: 35958998
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Training the spatially-coded SSVEP BCI on the fly.
    Maÿe A; Mutz M; Engel AK
    J Neurosci Methods; 2022 Aug; 378():109652. PubMed ID: 35716819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs.
    De Venuto D; Mezzina G
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Deep Neural Network for SSVEP-Based Brain-Computer Interfaces.
    Guney OB; Oblokulov M; Ozkan H
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):932-944. PubMed ID: 34495825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. P300 brain computer interface: current challenges and emerging trends.
    Fazel-Rezai R; Allison BZ; Guger C; Sellers EW; Kleih SC; Kübler A
    Front Neuroeng; 2012; 5():14. PubMed ID: 22822397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition.
    Pan Y; Chen J; Zhang Y; Zhang Y
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041426
    [No Abstract]   [Full Text] [Related]  

  • 56. A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome.
    Combaz A; Chatelle C; Robben A; Vanhoof G; Goeleven A; Thijs V; Van Hulle MM; Laureys S
    PLoS One; 2013; 8(9):e73691. PubMed ID: 24086289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.
    Ko LW; Ranga SSK; Komarov O; Chen CC
    J Healthc Eng; 2017; 2017():3789386. PubMed ID: 29065590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visual P300 Mind-Speller Brain-Computer Interfaces: A Walk Through the Recent Developments With Special Focus on Classification Algorithms.
    Philip JT; George ST
    Clin EEG Neurosci; 2020 Jan; 51(1):19-33. PubMed ID: 30997842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SSVEP-based brain-computer interface for music using a low-density EEG system.
    Venkatesh S; Miranda ER; Braund E
    Assist Technol; 2023 Sep; 35(5):378-388. PubMed ID: 35713603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.