These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34899981)

  • 1. Fluid-Solid Coupling Simulation of Wall Fluid Shear Stress on Cells under Gradient Fluid Flow.
    Zhang X; Gao Y; Huo B
    Appl Bionics Biomech; 2021; 2021():8340201. PubMed ID: 34899981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis on mechanical state on the osteoclasts under gradient fluid shear stress.
    Zhang X; Sun Q; Ye C; Li T; Jiao F; Gao Y; Huo B
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1067-1078. PubMed ID: 35477827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration and differentiation of osteoclast precursors under gradient fluid shear stress.
    Gao Y; Li T; Sun Q; Ye C; Guo M; Chen Z; Chen J; Huo B
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1731-1744. PubMed ID: 31115727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient fluid shear stress regulates migration of osteoclast precursors.
    Gao Y; Li T; Sun Q; Huo B
    Cell Adh Migr; 2019 Dec; 13(1):183-191. PubMed ID: 31131719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel cone-and-plate flow chamber with controlled distribution of wall fluid shear stress.
    Ye C; Ali S; Sun Q; Guo M; Liu Y; Gao Y; Huo B
    Comput Biol Med; 2019 Mar; 106():140-148. PubMed ID: 30721821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockdown of TRPV2 inhibits the migration of RAW264.7 cells toward low fluid shear stress region.
    Gao Y; Zhang X; Huo B
    J Cell Biochem; 2023 Sep; 124(9):1391-1403. PubMed ID: 37565651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-solid coupling numerical simulation of trabecular bone under cyclic loading in different directions.
    Li T; Chen Z; Gao Y; Zhu L; Yang R; Leng H; Huo B
    J Biomech; 2020 Aug; 109():109912. PubMed ID: 32807313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fluid-solid coupling numerical simulation on ideal porous structure of rat alveolar bone].
    Luo R; Zhao Z; Leng H; Huo B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):87-95. PubMed ID: 32096381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of fluid flow in trabecular-lacunar cavities under cyclic loading.
    Zhao S; Chen Z; Li T; Sun Q; Leng H; Huo B
    Comput Biol Med; 2023 Sep; 163():107144. PubMed ID: 37315384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Bone Remodeling in Rat Caudal Vertebrae Based on Fluid-Solid Coupling Simulation.
    Zhao S; Gao Y; Leng H; Sun L; Huo B
    Ann Biomed Eng; 2024 Nov; 52(11):3009-3020. PubMed ID: 38941057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying fluid shear stress in a rocking culture dish.
    Zhou X; Liu D; You L; Wang L
    J Biomech; 2010 May; 43(8):1598-602. PubMed ID: 20185133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-solid coupling numerical simulation of entire rat caudal vertebrae under dynamic loading.
    Zhao S; Gao Y; Yang A; Gao X; Leng H; Sun L; Huo B
    Comput Methods Biomech Biomed Engin; 2024 Jan; ():1-10. PubMed ID: 38231258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid-solid coupling numerical simulation of the effects of different doses of verapamil on cancellous bone in type 2 diabetic rats.
    Wu X; Gong H; Hu X
    BMC Musculoskelet Disord; 2024 Feb; 25(1):123. PubMed ID: 38336651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and research of bone repair scaffold based on two-way fluid-structure interaction.
    Fu M; Wang F; Lin G
    Comput Methods Programs Biomed; 2021 Jun; 204():106055. PubMed ID: 33784546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts.
    Yu W; Qu H; Hu G; Zhang Q; Song K; Guan H; Liu T; Qin J
    PLoS One; 2014; 9(2):e89966. PubMed ID: 24587156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress.
    Yang C; Canton G; Yuan C; Ferguson M; Hatsukami TS; Tang D
    Biomed Eng Online; 2011 Jul; 10():61. PubMed ID: 21771293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular fluid shear stress on implant surfaces-establishment of a novel experimental set up.
    Kämmerer PW; Thiem DGE; Alshihri A; Wittstock GH; Bader R; Al-Nawas B; Klein MO
    Int J Implant Dent; 2017 Dec; 3(1):22. PubMed ID: 28567712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miRNA expression profile during fluid shear stress-induced osteogenic differentiation in MC3T3-E1 cells.
    Mai ZH; Peng ZL; Zhang JL; Chen L; Liang HY; Cai B; Ai H
    Chin Med J (Engl); 2013; 126(8):1544-50. PubMed ID: 23595392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry modulates osteoblasts sensitivity to low fluid shear stress.
    Xing J; Li Y; Lin M; Wang J; Wu J; Ma Y; Wang Y; Yang L; Luo Y
    J Biomed Mater Res A; 2014 Nov; 102(11):4151-60. PubMed ID: 24443183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.