These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34900090)

  • 1. FPGA Integrated Optofluidic Biosensor for Real-Time Single Biomarker Analysis.
    Sampad MJN; Amin MN; Hawkins AR; Schmidt H
    IEEE Photonics J; 2022 Feb; 14(1):. PubMed ID: 34900090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications.
    Parks JW; Olson MA; Kim J; Ozcelik D; Cai H; Carrion R; Patterson JL; Mathies RA; Hawkins AR; Schmidt H
    Biomicrofluidics; 2014 Sep; 8(5):054111. PubMed ID: 25584111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
    Amin MN; Ganjalizadeh V; Hamblin M; Hawkins AR; Schmidt H
    IEEE Photonics Technol Lett; 2021 Aug; 33(16):884-887. PubMed ID: 34744399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid optofluidic integration.
    Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H
    Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic Flow-Through Biosensor Sensitivity - Model and Experiment.
    Wright JG; Amin MN; Meena GG; Schmidt H; Hawkins AR
    J Lightwave Technol; 2021 May; 39(10):3330-3340. PubMed ID: 34177078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive time modulation technique for multiplexed on-chip particle detection across scales.
    Ganjalizadeh V; Hawkins AR; Schmidt H
    Optica; 2023 Jul; 10(7):812-818. PubMed ID: 38818330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-optofluidic waveguide in-line fiber biosensor for real-time label-free detection of interferon-gamma with temperature compensation.
    Gao R; Lu D; Guo D; Xin X
    Opt Express; 2020 Mar; 28(7):10491-10504. PubMed ID: 32225632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-fabricated fluorescence-activated cell sorter.
    Cho SH; Chen CH; Tsai FS; Lo YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1075-8. PubMed ID: 19965141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (bARROW) Waveguides.
    Wall T; McMurray J; Meena G; Ganjalizadeh V; Schmidt H; Hawkins AR
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 29201455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ label-free temperature-compensated DNA hybridization detection with a fiber-optic interferometer and a fiber Bragg grating for microfluidic chip.
    Hu XG; Zhao Y; Peng Y; Chen XM; Wang LF; Lin ZT; Zhao J; Hu S
    Biosens Bioelectron; 2023 Dec; 242():115703. PubMed ID: 37820556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-in-One Optofluidic Chip for Molecular Biosensing Assays.
    Sano T; Zhang H; Losakul R; Schmidt H
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greatly Enhanced Single Particle Fluorescence Detection Using High Refractive Index Liquid-Core Waveguides.
    Meena GG; Wright JG; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2021; 27(5):. PubMed ID: 33994767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slab waveguide-based particle plasmon resonance optofluidic biosensor for rapid and label-free detection.
    Barshilia D; Komaram AC; Chen PC; Chau LK; Chang GE
    Analyst; 2022 Oct; 147(20):4417-4425. PubMed ID: 36040479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buried Rib SiO
    Stott MA; Ganjalizadeh V; Meena G; McMurray J; Olsen M; Orfila M; Schmidt H; Hawkins AR
    IEEE Photonics Technol Lett; 2018 Oct; 30(16):1487-1490. PubMed ID: 30618484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic lab-on-a-chip for rapid algae population screening.
    Schaap A; Bellouard Y; Rohrlack T
    Biomed Opt Express; 2011 Feb; 2(3):658-64. PubMed ID: 21412470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning at the edge for AI-enabled multiplexed pathogen detection.
    Ganjalizadeh V; Meena GG; Stott MA; Hawkins AR; Schmidt H
    Sci Rep; 2023 Mar; 13(1):4744. PubMed ID: 36959357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integrated Optofluidic Platform Enabling Total Phosphorus On-Chip Digestion and Online Real-Time Detection.
    Li C; Wang B; Wan H; He R; Li Q; Yang S; Dai W; Wang N
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.