These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 34900343)

  • 1. Integrating plant molecular farming and materials research for next-generation vaccines.
    Chung YH; Church D; Koellhoffer EC; Osota E; Shukla S; Rybicki EP; Pokorski JK; Steinmetz NF
    Nat Rev Mater; 2022; 7(5):372-388. PubMed ID: 34900343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health?
    Zahmanova G; Aljabali AA; Takova K; Toneva V; Tambuwala MM; Andonov AP; Lukov GL; Minkov I
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding.
    Margolin E; Crispin M; Meyers A; Chapman R; Rybicki EP
    Front Plant Sci; 2020; 11():609207. PubMed ID: 33343609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals.
    Zahmanova G; Aljabali AAA; Takova K; Minkov G; Tambuwala MM; Minkov I; Lomonossoff GP
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaccine manufacturing and technology: from biotechnological platforms to syntethic epitopes, current viepoint.
    Ignateva GA
    Patol Fiziol Eksp Ter; 2016; 60(4):143-7. PubMed ID: 29244936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influenza virus vaccine live intranasal--MedImmune vaccines: CAIV-T, influenza vaccine live intranasal.
    Drugs R D; 2003; 4(5):312-9. PubMed ID: 12952502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant molecular farming for the production of valuable proteins - Critical evaluation of achievements and future challenges.
    Schillberg S; Finnern R
    J Plant Physiol; 2021; 258-259():153359. PubMed ID: 33460995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editorial: Plant molecular farming for the production of next-generation vaccines and biologics - prospects and challenges.
    Shanmugaraj B; Hefferon K
    Front Plant Sci; 2024; 15():1381234. PubMed ID: 38476681
    [No Abstract]   [Full Text] [Related]  

  • 9. Plant-made vaccines against viral diseases in humans and farm animals.
    Su H; van Eerde A; Rimstad E; Bock R; Branza-Nichita N; Yakovlev IA; Clarke JL
    Front Plant Sci; 2023; 14():1170815. PubMed ID: 37056490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in expression and purification strategies for plant made vaccines.
    Venkataraman S; Khan I; Habibi P; Le M; Lippert R; Hefferon K
    Front Plant Sci; 2023; 14():1273958. PubMed ID: 38078091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant molecular farming of virus-like nanoparticles as vaccines and reagents.
    Rybicki EP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1587. PubMed ID: 31486296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant-based biopharmaceutical engineering.
    Eidenberger L; Kogelmann B; Steinkellner H
    Nat Rev Bioeng; 2023; 1(6):426-439. PubMed ID: 37317690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?
    Clarke JL; Waheed MT; Lössl AG; Martinussen I; Daniell H
    Plant Mol Biol; 2013 Sep; 83(1-2):33-40. PubMed ID: 23729352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-made pharmaceuticals: exploring studies for the production of recombinant protein in plants and assessing challenges ahead.
    Lee J; Lee SK; Park JS; Lee KR
    Plant Biotechnol Rep; 2023; 17(1):53-65. PubMed ID: 36820221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Development and Future Prospects of Plant-Based Vaccines.
    Sohrab SS; Suhail M; Kamal MA; Husen A; Azhar EI
    Curr Drug Metab; 2017; 18(9):831-841. PubMed ID: 28699508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-Derived Human Vaccines: Recent Developments.
    Stander J; Mbewana S; Meyers AE
    BioDrugs; 2022 Sep; 36(5):573-589. PubMed ID: 35821564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant-made oral vaccines against human infectious diseases-Are we there yet?
    Chan HT; Daniell H
    Plant Biotechnol J; 2015 Oct; 13(8):1056-70. PubMed ID: 26387509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant-Based Vaccines: The Way Ahead?
    LeBlanc Z; Waterhouse P; Bally J
    Viruses; 2020 Dec; 13(1):. PubMed ID: 33375155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-made vaccines and reagents for the One Health initiative.
    Rybicki EP
    Hum Vaccin Immunother; 2017 Dec; 13(12):2912-2917. PubMed ID: 28846485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Critical Review of the Concept of Transgenic Plants: Insights into Pharmaceutical Biotechnology and Molecular Farming.
    Abiri R; Valdiani A; Maziah M; Shaharuddin NA; Sahebi M; Yusof ZN; Atabaki N; Talei D
    Curr Issues Mol Biol; 2016; 18():21-42. PubMed ID: 25944541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.