These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 34901357)
1. Using thermodynamic equilibrium models to predict the effect of antiviral agents on infectivity: Theoretical application to SARS-CoV-2 and other viruses. Gale P Microb Risk Anal; 2022 Aug; 21():100198. PubMed ID: 34901357 [TBL] [Abstract][Full Text] [Related]
2. How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV. Gale P Microb Risk Anal; 2020 Aug; 15():100104. PubMed ID: 32292808 [TBL] [Abstract][Full Text] [Related]
3. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. Gale P Microb Risk Anal; 2019 Aug; 12():27-43. PubMed ID: 32289057 [TBL] [Abstract][Full Text] [Related]
4. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. Tandon R; Sharp JS; Zhang F; Pomin VH; Ashpole NM; Mitra D; McCandless MG; Jin W; Liu H; Sharma P; Linhardt RJ J Virol; 2021 Jan; 95(3):. PubMed ID: 33173010 [TBL] [Abstract][Full Text] [Related]
5. Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus. Gale P Microb Risk Anal; 2018 Apr; 8():1-13. PubMed ID: 32289059 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2. Gale P Microb Risk Anal; 2020 Dec; 16():100140. PubMed ID: 32984489 [TBL] [Abstract][Full Text] [Related]
9. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. Tandon R; Sharp JS; Zhang F; Pomin VH; Ashpole NM; Mitra D; Jin W; Liu H; Sharma P; Linhardt RJ bioRxiv; 2020 Jul; ():. PubMed ID: 32577638 [TBL] [Abstract][Full Text] [Related]
10. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
11. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
13. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
14. Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection Curreli F; Victor SMB; Ahmed S; Drelich A; Tong X; Tseng CK; Hillyer CD; Debnath AK mBio; 2020 Dec; 11(6):. PubMed ID: 33310780 [TBL] [Abstract][Full Text] [Related]
15. Geraniin Inhibits the Entry of SARS-CoV-2 by Blocking the Interaction between Spike Protein RBD and Human ACE2 Receptor. Kim YS; Chung HS; Noh SG; Lee B; Chung HY; Choi JG Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445310 [TBL] [Abstract][Full Text] [Related]
16. Natural isolate and recombinant SARS-CoV-2 rapidly evolve in vitro to higher infectivity through more efficient binding to heparan sulfate and reduced S1/S2 cleavage. Shiliaev N; Lukash T; Palchevska O; Crossman DK; Green TJ; Crowley MR; Frolova EI; Frolov I bioRxiv; 2021 Jun; ():. PubMed ID: 34230926 [TBL] [Abstract][Full Text] [Related]
17. SARS-CoV-2 pseudovirus infectivity and expression of viral entry-related factors ACE2, TMPRSS2, Kim-1, and NRP-1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. Zhang F; Li W; Feng J; Ramos da Silva S; Ju E; Zhang H; Chang Y; Moore PS; Guo H; Gao SJ J Med Virol; 2021 Dec; 93(12):6671-6685. PubMed ID: 34324210 [TBL] [Abstract][Full Text] [Related]
18. A Recombinant Fragment of Human Surfactant Protein D Binds Spike Protein and Inhibits Infectivity and Replication of SARS-CoV-2 in Clinical Samples. Madan T; Biswas B; Varghese PM; Subedi R; Pandit H; Idicula-Thomas S; Kundu I; Rooge S; Agarwal R; Tripathi DM; Kaur S; Gupta E; Gupta SK; Kishore U Am J Respir Cell Mol Biol; 2021 Jul; 65(1):41-53. PubMed ID: 33784482 [TBL] [Abstract][Full Text] [Related]
19. Human Surfactant Protein D Binds Spike Protein and Acts as an Entry Inhibitor of SARS-CoV-2 Pseudotyped Viral Particles. Hsieh MH; Beirag N; Murugaiah V; Chou YC; Kuo WS; Kao HF; Madan T; Kishore U; Wang JY Front Immunol; 2021; 12():641360. PubMed ID: 34054808 [TBL] [Abstract][Full Text] [Related]
20. COVID infection in 4 steps: Thermodynamic considerations reveal how viral mucosal diffusion, target receptor affinity and furin cleavage act in concert to drive the nature and degree of infection in human COVID-19 disease. Popovic M; Martin JH; Head RJ Heliyon; 2023 Jun; 9(6):e17174. PubMed ID: 37325453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]