These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34901391)

  • 41. Profound elevation of CD8+ T cells expressing the intraepithelial lymphocyte marker CD103 (alphaE/beta7 Integrin) in high-grade serous ovarian cancer.
    Webb JR; Wick DA; Nielsen JS; Tran E; Milne K; McMurtrie E; Nelson BH
    Gynecol Oncol; 2010 Sep; 118(3):228-36. PubMed ID: 20541243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer.
    Wilson AJ; Saskowski J; Barham W; Khabele D; Yull F
    Mol Cancer; 2015 Nov; 14():192. PubMed ID: 26552746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carboplatin and programmed death-ligand 1 blockade synergistically produce a similar antitumor effect to carboplatin alone in murine ID8 ovarian cancer model.
    Zhu X; Xu J; Cai H; Lang J
    J Obstet Gynaecol Res; 2018 Feb; 44(2):303-311. PubMed ID: 29171115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity.
    Giuntoli RL; Webb TJ; Zoso A; Rogers O; Diaz-Montes TP; Bristow RE; Oelke M
    Anticancer Res; 2009 Aug; 29(8):2875-84. PubMed ID: 19661290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Oncolytic Adenovirus Targeting Transforming Growth Factor β Inhibits Protumorigenic Signals and Produces Immune Activation: A Novel Approach to Enhance Anti-PD-1 and Anti-CTLA-4 Therapy.
    Yang Y; Xu W; Peng D; Wang H; Zhang X; Wang H; Xiao F; Zhu Y; Ji Y; Gulukota K; Helseth DL; Mangold KA; Sullivan M; Kaul K; Wang E; Prabhakar BS; Li J; Wu X; Wang L; Seth P
    Hum Gene Ther; 2019 Sep; 30(9):1117-1132. PubMed ID: 31126191
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oncolytic virus as an agent for the treatment of malignant ascites.
    Liu HL; Chen J
    Cancer Biother Radiopharm; 2009 Feb; 24(1):99-102. PubMed ID: 19216627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A rational relationship: Oncolytic virus vaccines as functional partners for adoptive T cell therapy.
    Burchett R; Walsh S; Wan Y; Bramson JL
    Cytokine Growth Factor Rev; 2020 Dec; 56():149-159. PubMed ID: 32665126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxytocin in the tumor microenvironment is associated with lower inflammation and longer survival in advanced epithelial ovarian cancer patients.
    Cuneo MG; Szeto A; Schrepf A; Kinner EM; Schachner BI; Ahmed R; Thaker PH; Goodheart M; Bender D; Cole SW; McCabe PM; Sood AK; Lutgendorf SK; Mendez AJ
    Psychoneuroendocrinology; 2019 Aug; 106():244-251. PubMed ID: 31005045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oncolytic virotherapy enhances the efficacy of a cancer vaccine by modulating the tumor microenvironment.
    Koske I; Rössler A; Pipperger L; Petersson M; Barnstorf I; Kimpel J; Tripp CH; Stoitzner P; Bánki Z; von Laer D
    Int J Cancer; 2019 Oct; 145(7):1958-1969. PubMed ID: 30972741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oncolytic Viruses: Priming Time for Cancer Immunotherapy.
    Russell L; Peng KW; Russell SJ; Diaz RM
    BioDrugs; 2019 Oct; 33(5):485-501. PubMed ID: 31321623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy.
    Dammeijer F; Lievense LA; Kaijen-Lambers ME; van Nimwegen M; Bezemer K; Hegmans JP; van Hall T; Hendriks RW; Aerts JG
    Cancer Immunol Res; 2017 Jul; 5(7):535-546. PubMed ID: 28536100
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer.
    Goshima F; Esaki S; Luo C; Kamakura M; Kimura H; Nishiyama Y
    Int J Cancer; 2014 Jun; 134(12):2865-77. PubMed ID: 24265099
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer.
    Puiffe ML; Le Page C; Filali-Mouhim A; Zietarska M; Ouellet V; Tonin PN; Chevrette M; Provencher DM; Mes-Masson AM
    Neoplasia; 2007 Oct; 9(10):820-9. PubMed ID: 17971902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of T cell repertoire of blood, tumor, and ascites in ovarian cancer patients using next generation sequencing.
    Jang M; Yew PY; Hasegawa K; Ikeda Y; Fujiwara K; Fleming GF; Nakamura Y; Park JH
    Oncoimmunology; 2015 Nov; 4(11):e1030561. PubMed ID: 26451311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer.
    Ino Y; Yamazaki-Itoh R; Shimada K; Iwasaki M; Kosuge T; Kanai Y; Hiraoka N
    Br J Cancer; 2013 Mar; 108(4):914-23. PubMed ID: 23385730
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinical significance of ascites in epithelial ovarian cancer.
    Huang H; Li YJ; Lan CY; Huang QD; Feng YL; Huang YW; Liu JH
    Neoplasma; 2013; 60(5):546-52. PubMed ID: 23790174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro.
    Burke S; Shergold A; Elder MJ; Whitworth J; Cheng X; Jin H; Wilkinson RW; Harper J; Carroll DK
    Cancer Immunol Immunother; 2020 Jun; 69(6):1015-1027. PubMed ID: 32088771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. VEGF Potentiates GD3-Mediated Immunosuppression by Human Ovarian Cancer Cells.
    Tiper IV; Temkin SM; Spiegel S; Goldblum SE; Giuntoli RL; Oelke M; Schneck JP; Webb TJ
    Clin Cancer Res; 2016 Aug; 22(16):4249-58. PubMed ID: 27076627
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy.
    Li M; Li M; Yang Y; Liu Y; Xie H; Yu Q; Tian L; Tang X; Ren K; Li J; Zhang Z; He Q
    J Control Release; 2020 May; 321():23-35. PubMed ID: 32035193
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.