These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34901537)

  • 1. Surface engineering and the application of laser-based processes to stents - A review of the latest development.
    Dong J; Pacella M; Liu Y; Zhao L
    Bioact Mater; 2022 Apr; 10():159-184. PubMed ID: 34901537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of endothelialisation of coronary stents by laser surface engineering.
    Li L; Mirhosseini N; Michael A; Liu Z; Wang T
    Lasers Surg Med; 2013 Nov; 45(9):608-16. PubMed ID: 24037969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of endothelial cell growth on commercial coronary stents with and without laser surface texturing.
    Mirhosseini N; Li L; Liu Z; Mamas M; Fraser D; Wang T
    Heliyon; 2024 Mar; 10(5):e26425. PubMed ID: 38434339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces.
    Hansi C; Arab A; Rzany A; Ahrens I; Bode C; Hehrlein C
    Catheter Cardiovasc Interv; 2009 Mar; 73(4):488-96. PubMed ID: 19235237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary Stent Materials and Coatings: A Technology and Performance Update.
    O'Brien B; Zafar H; Ibrahim A; Zafar J; Sharif F
    Ann Biomed Eng; 2016 Feb; 44(2):523-35. PubMed ID: 26139297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Engineering of Bioactive Coatings for Improved Stent Hemocompatibility: A Comprehensive Review.
    Raikar AS; Priya S; Bhilegaonkar SP; Somnache SN; Kalaskar DM
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.
    Mostaed E; Sikora-Jasinska M; Mostaed A; Loffredo S; Demir AG; Previtali B; Mantovani D; Beanland R; Vedani M
    J Mech Behav Biomed Mater; 2016 Jul; 60():581-602. PubMed ID: 27062241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-eluting stents.
    García-García HM; Vaina S; Tsuchida K; Serruys PW
    Arch Cardiol Mex; 2006; 76(3):297-319. PubMed ID: 17091802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Processing of Hard and Ultra-Hard Materials for Micro-Machining and Surface Engineering Applications.
    Hazzan KE; Pacella M; See TL
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives.
    Hu T; Yang C; Lin S; Yu Q; Wang G
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():163-178. PubMed ID: 30033243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants.
    Ma J; Thompson M; Zhao N; Zhu D
    J Orthop Translat; 2014 Jul; 2(3):118-130. PubMed ID: 27695671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility.
    Duan X; Yang Y; Zhang T; Zhu B; Wei G; Li H
    Heliyon; 2024 Feb; 10(4):e25515. PubMed ID: 38375258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical investigation into the observation that silicon carbide coating on cobalt chromium stents leads to early differentiating functional endothelial layer, increased safety and DES-like recurrent stenosis rates: results of the PRO-Heal Registry (PRO-Kinetic enhancing rapid in-stent endothelialisation).
    Dahm JB; Willems T; Wolpers HG; Nordbeck H; Becker J; Ruppert J
    EuroIntervention; 2009 Jan; 4(4):502-8. PubMed ID: 19284073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents.
    Wang L; Jiao L; Pang S; Yan P; Wang X; Qiu T
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of coronary stents: A review of types, materials, processing techniques, design, and problems.
    Ahadi F; Azadi M; Biglari M; Bodaghi M; Khaleghian A
    Heliyon; 2023 Feb; 9(2):e13575. PubMed ID: 36846695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing advances in the development of stents.
    Khalaj R; Tabriz AG; Okereke MI; Douroumis D
    Int J Pharm; 2021 Nov; 609():121153. PubMed ID: 34624441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Novel Biodegradable Metallic Stent Based on Microgalvanic Effect.
    Frattolin J; Barua R; Aydin H; Rajagopalan S; Gottellini L; Leask R; Yue S; Frost D; Bertrand OF; Mongrain R
    Ann Biomed Eng; 2016 Feb; 44(2):404-18. PubMed ID: 26384666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coating bioabsorption and chronic bare metal scaffolding versus fully bioabsorbable stent.
    Waksman R; Pakala R
    EuroIntervention; 2009 Dec; 5 Suppl F():F36-42. PubMed ID: 22100674
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.