These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34901621)

  • 1. Zero-Valent Iron Nanoparticles Induce Reactive Oxygen Species in the Cyanobacterium,
    Gichuki SM; Yalcin YS; Wyatt L; Ghann W; Uddin J; Kang H; Sitther V
    ACS Omega; 2021 Dec; 6(48):32730-32738. PubMed ID: 34901621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Zero-Valent Iron Nanoparticles on
    Fathabad SG; Tabatabai B; Walker D; Chen H; Lu J; Aslan K; Uddin J; Ghann W; Sitther V
    ACS Omega; 2020 Jun; 5(21):12166-12173. PubMed ID: 32548398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotic-Induced Changes in Pigment Accumulation, Photosystem II, and Membrane Permeability in a Model Cyanobacterium.
    Yalcin YS; Aydin BN; Sayadujjhara M; Sitther V
    Front Microbiol; 2022; 13():930357. PubMed ID: 35814666
    [No Abstract]   [Full Text] [Related]  

  • 4. Augmenting Fremyella diplosiphon Cellular Lipid Content and Unsaturated Fatty Acid Methyl Esters Via Sterol Desaturase Gene Overexpression.
    Gharaie Fathabad S; Arumanayagam AS; Tabatabai B; Chen H; Lu J; Sitther V
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1127-1140. PubMed ID: 31168708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of the Photoreactivation Gene in
    Gichuki SM; Arumanayagam AS; Tabatabai B; Yalcin YS; Wyatt L; Sitther V
    ACS Omega; 2022 Oct; 7(39):35092-35101. PubMed ID: 36211070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium
    Tabatabai B; Fathabad SG; Bonyi E; Rajini S; Aslan K; Sitther V
    Bioenergy Res; 2019 Jun; 12():409-418. PubMed ID: 31984113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanoscale zero-valent iron confined in mesostructure on Escherichia coli.
    Sun X; Yan Y; Wang M; Han Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):24038-24045. PubMed ID: 28913810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction.
    Woo H; Park J; Lee S; Lee S
    Chemosphere; 2014 Feb; 97():146-52. PubMed ID: 24290304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.
    Sun X; Yan Y; Li J; Han W; Wang L
    J Hazard Mater; 2014 Feb; 266():26-33. PubMed ID: 24374562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen.
    Machado S; Stawiński W; Slonina P; Pinto AR; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C
    Sci Total Environ; 2013 Sep; 461-462():323-9. PubMed ID: 23738986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal interference of clay minerals and nanoparticulate zero-valent iron on their interfacial interaction with dissolved organic matter.
    Wang Y; Liu Y; Yang K; Lin D
    Sci Total Environ; 2020 Oct; 739():140372. PubMed ID: 32758974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria.
    Rónavári A; Balázs M; Tolmacsov P; Molnár C; Kiss I; Kukovecz Á; Kónya Z
    Water Res; 2016 May; 95():165-73. PubMed ID: 26994337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline.
    Wu Y; Yue Q; Gao Y; Ren Z; Gao B
    J Environ Sci (China); 2018 Jul; 69():173-182. PubMed ID: 29941253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon.
    Busch AW; Montgomery BL
    Front Microbiol; 2015; 6():1393. PubMed ID: 26696996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon.
    Pattanaik B; Busch AWU; Hu P; Chen J; Montgomery BL
    Microbiology (Reading); 2014 May; 160(Pt 5):992-1005. PubMed ID: 24623652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon.
    Singh SP; Montgomery BL
    Front Microbiol; 2015; 6():1215. PubMed ID: 26594203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.
    Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C
    Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of Nanoscaled Zero-Valent Iron Particles on Tilapia,
    Kirthi AV; Kumar G; Pant G; Pant M; Hossain K; Ahmad A; Alshammari MB
    ACS Omega; 2022 Dec; 7(51):47869-47879. PubMed ID: 36591132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species.
    Semerád J; Čvančarová M; Filip J; Kašlík J; Zlotá J; Soukupová J; Cajthaml T
    Chemosphere; 2018 Dec; 213():568-577. PubMed ID: 30268053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.