These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34901712)

  • 1. An increased proportion of transgenic plants in the progeny of rapeseed (Brassica napus L.) transformants.
    Raldugina GN; Hoang TZ; Ngoc HB; Karpichev IV
    Vavilovskii Zhurnal Genet Selektsii; 2021 Mar; 25(2):147-156. PubMed ID: 34901712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum.
    Fan Y; Du K; Gao Y; Kong Y; Chu C; Sokolov V; Wang Y
    Genetika; 2013 Apr; 49(4):439-47. PubMed ID: 23866620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants.
    De Block M; De Brouwer D; Tenning P
    Plant Physiol; 1989 Oct; 91(2):694-701. PubMed ID: 16667089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation.
    Sharma KK; Anjaiah V
    Plant Sci; 2000 Oct; 159(1):7-19. PubMed ID: 11011088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency.
    Li B; Xie C; Qiu H
    Plant Cell Rep; 2009 Mar; 28(3):373-86. PubMed ID: 19018535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants.
    Daley M; Knauf VC; Summerfelt KR; Turner JC
    Plant Cell Rep; 1998 Apr; 17(6-7):489-496. PubMed ID: 30736624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium-mediated transformation of white mustard (Sinapis alba L.) and regeneration of transgenic plants.
    Hadfi K; Batschauer A
    Plant Cell Rep; 1994 Jan; 13(3-4):130-4. PubMed ID: 24193637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of LRP gene into Brassica napus mediated by Agrobacterium tumefaciens to enhance lysine content in seeds.
    Wang J; Chen L; Liu QQ; Sun SS; Sokolov V; Wang YP
    Genetika; 2011 Dec; 47(12):1616-21. PubMed ID: 22384690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Production of transgenic rape plants (Brassica napus L.) using Agrobacterium tumefaciens].
    Radchuk VV; Klocke E; Radchuk RI; Neumann M; Blume YaB
    Genetika; 2000 Jul; 36(7):932-41. PubMed ID: 10994497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of Brassica napus with Agrobacterium tumefaciens based vectors.
    Fry J; Barnason A; Horsch RB
    Plant Cell Rep; 1987 Oct; 6(5):321-5. PubMed ID: 24248835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inheritance of a bacterial hygromycin phosphotransferase gene in the progeny of primary transgenic pea plants.
    Puonti-Kaerlas J; Eriksson T; Engström P
    Theor Appl Genet; 1992 Jul; 84(3-4):443-50. PubMed ID: 24203206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic Brassica napus plants obtained by cocultivation of protoplasts with Agrobacterium tumefaciens.
    Thomzik JE; Hain R
    Plant Cell Rep; 1990 Sep; 9(5):233-6. PubMed ID: 24226815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of three
    Liu F; Wang P; Xiong X; Fu P; Gao H; Ding X; Wu G
    Plant Methods; 2020; 16():81. PubMed ID: 32518583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved protocol for Agrobacterium-mediated transformation of Antirrhinum majus L.
    Cui ML; Handa T; Ezura H
    Mol Genet Genomics; 2003 Dec; 270(4):296-302. PubMed ID: 14513365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants.
    Cho MJ; Choi HW; Jiang W; Ha CD; Lemaux PG
    Physiol Plant; 2002 May; 115(1):144-154. PubMed ID: 12010478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.
    Mehrotra M; Sanyal I; Amla DV
    Plant Cell Rep; 2011 Sep; 30(9):1603-16. PubMed ID: 21516347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro.
    Sankara Rao K; Sreevathsa R; Sharma PD; Keshamma E; Udaya Kumar M
    Physiol Mol Biol Plants; 2008 Oct; 14(4):321-8. PubMed ID: 23572898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium tumefaciens-mediated transformation and transgenic-plant regeneration of onion (Allium cepa L.).
    Eady CC; Weld RJ; Lister CE
    Plant Cell Rep; 2000 Mar; 19(4):376-381. PubMed ID: 30754790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inheritance of GFP-Bt transgenes from Brassica napus in backcrosses with three wild B. rapa accessions.
    Zhu B; Lawrence JR; Warwick SI; Mason P; Braun L; Halfhill MD; Stewart CN
    Environ Biosafety Res; 2004; 3(1):45-54. PubMed ID: 15612354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.).
    Nath UK; Wilmer JA; Wallington EJ; Becker HC; Möllers C
    Theor Appl Genet; 2009 Feb; 118(4):765-73. PubMed ID: 19050848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.