These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34901835)

  • 1. Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning.
    Kurz D; Sánchez CS; Axenie C
    Front Artif Intell; 2021; 4():713690. PubMed ID: 34901835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of mechanistic learning in mathematical oncology.
    Metzcar J; Jutzeler CR; Macklin P; Köhn-Luque A; Brüningk SC
    Front Immunol; 2024; 15():1363144. PubMed ID: 38533513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven discovery of Green's functions with human-understandable deep learning.
    Boullé N; Earls CJ; Townsend A
    Sci Rep; 2022 Mar; 12(1):4824. PubMed ID: 35319007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on deep learning applications in highly multiplexed tissue imaging data analysis.
    Zidane M; Makky A; Bruhns M; Rochwarger A; Babaei S; Claassen M; Schürch CM
    Front Bioinform; 2023; 3():1159381. PubMed ID: 37564726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning of Biological Models from Data: Applications to ODE Models.
    Su WH; Chou CS; Xiu D
    Bull Math Biol; 2021 Jan; 83(3):19. PubMed ID: 33452931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining data assimilation and machine learning to build data-driven models for unknown long time dynamics-Applications in cardiovascular modeling.
    Regazzoni F; Chapelle D; Moireau P
    Int J Numer Method Biomed Eng; 2021 Jul; 37(7):e3471. PubMed ID: 33913623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven discovery of coordinates and governing equations.
    Champion K; Lusch B; Kutz JN; Brunton SL
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22445-22451. PubMed ID: 31636218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing Bayesian networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
    Kalet AM; Doctor JN; Gennari JH; Phillips MH
    Med Phys; 2017 Aug; 44(8):4350-4359. PubMed ID: 28500765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling in autoimmune diseases: from theory to clinical application.
    Ugolkov Y; Nikitich A; Leon C; Helmlinger G; Peskov K; Sokolov V; Volkova A
    Front Immunol; 2024; 15():1371620. PubMed ID: 38550585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges.
    Hassan J; Saeed SM; Deka L; Uddin MJ; Das DB
    Pharmaceutics; 2024 Feb; 16(2):. PubMed ID: 38399314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical models for translational and clinical oncology.
    Gallasch R; Efremova M; Charoentong P; Hackl H; Trajanoski Z
    J Clin Bioinforma; 2013 Nov; 3(1):23. PubMed ID: 24195863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence and Mechanistic Modeling for Clinical Decision Making in Oncology.
    Benzekry S
    Clin Pharmacol Ther; 2020 Sep; 108(3):471-486. PubMed ID: 32557598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
    Alber M; Buganza Tepole A; Cannon WR; De S; Dura-Bernal S; Garikipati K; Karniadakis G; Lytton WW; Perdikaris P; Petzold L; Kuhl E
    NPJ Digit Med; 2019; 2():115. PubMed ID: 31799423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives on making big data analytics work for oncology.
    El Naqa I
    Methods; 2016 Dec; 111():32-44. PubMed ID: 27586524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics.
    Ota R; Yamashita F
    J Control Release; 2022 Dec; 352():961-969. PubMed ID: 36370876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A primer on applying AI synergistically with domain expertise to oncology.
    Kim J; Kusko R; Zeskind B; Zhang J; Escalante-Chong R
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188548. PubMed ID: 33901609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personalized Risk Analysis to Improve the Psychological Resilience of Women Undergoing Treatment for Breast Cancer: Development of a Machine Learning-Driven Clinical Decision Support Tool.
    C Manikis G; Simos NJ; Kourou K; Kondylakis H; Poikonen-Saksela P; Mazzocco K; Pat-Horenczyk R; Sousa B; Oliveira-Maia AJ; Mattson J; Roziner I; Marzorati C; Marias K; Nuutinen M; Karademas E; Fotiadis D
    J Med Internet Res; 2023 Jun; 25():e43838. PubMed ID: 37307043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.