BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3490186)

  • 1. Regulation of cytosolic free calcium concentration in cultured renal epithelial cells.
    Cheung JY; Constantine JM; Bonventre JV
    Am J Physiol; 1986 Oct; 251(4 Pt 2):F690-701. PubMed ID: 3490186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic free calcium concentration in cultured renal epithelial cells.
    Bonventre JV; Cheung JY
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F329-38. PubMed ID: 3946609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. Effects of sodium and inositol 1,4,5-trisphosphate.
    Rossier MF; Krause KH; Lew PD; Capponi AM; Vallotton MB
    J Biol Chem; 1987 Mar; 262(9):4053-8. PubMed ID: 2435728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. myo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes.
    Delfert DM; Hill S; Pershadsingh HA; Sherman WR; McDonald JM
    Biochem J; 1986 May; 236(1):37-44. PubMed ID: 2947569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in renal epithelial LLC-PK1 cells.
    Tshipamba M; De Smedt H; Missiaen L; Himpens B; Van Den Bosch L; Borghgraef R
    J Cell Physiol; 1993 Apr; 155(1):96-103. PubMed ID: 8468373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line.
    Prentki M; Corkey BE; Matschinsky FM
    J Biol Chem; 1985 Aug; 260(16):9185-90. PubMed ID: 2991236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells.
    Biden TJ; Prentki M; Irvine RF; Berridge MJ; Wollheim CB
    Biochem J; 1984 Oct; 223(2):467-73. PubMed ID: 6093775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools.
    Schulz I; Thévenod F; Dehlinger-Kremer M
    Cell Calcium; 1989 Jul; 10(5):325-36. PubMed ID: 2548726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells (GH3). Translocation of Ca2+ into mitochondria from a functionally discrete portion of the nonmitochondrial store.
    Biden TJ; Wollheim CB; Schlegel W
    J Biol Chem; 1986 Jun; 261(16):7223-9. PubMed ID: 3486868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol 1,4,5-trisphosphate-induced Ca2+ release from permeabilized mastocytoma cells.
    Muto Y; Tohmatsu T; Yoshioka S; Nozawa Y
    Biochem Biophys Res Commun; 1986 Feb; 135(1):46-51. PubMed ID: 3082330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland.
    Thévenod F; Schulz I
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of nonmitochondrial sequestered Ca2+ from permeabilized muscle cells in culture.
    Ambler SK; Taylor P
    Mol Pharmacol; 1989 Mar; 35(3):369-74. PubMed ID: 2784536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium homeostasis in digitonin-permeabilized bovine chromaffin cells.
    Kao LS
    J Neurochem; 1988 Jul; 51(1):221-7. PubMed ID: 2898003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-secretion coupling in exocrine glands: the role of inositol-1,4,5-trisphosphate, calcium and cAMP.
    Schulz I; Streb H; Bayerdörffer E; Thévenod F
    Curr Eye Res; 1985 Apr; 4(4):467-73. PubMed ID: 2990822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate releases Ca2+ from a nonmitochondrial store site in permeabilized rat cortical kidney cells.
    Thévenod F; Streb H; Ullrich KJ; Schulz I
    Kidney Int; 1986 Mar; 29(3):695-702. PubMed ID: 3486313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium transport systems in the LLC-PK1 renal epithelial established cell line.
    Parys JB; De Smedt H; Borghgraef R
    Biochim Biophys Acta; 1986 Aug; 888(1):70-81. PubMed ID: 2874834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of different Ca2+ pools in permeabilized rat thymocytes.
    Gukovskaya AS; Zinchenko VP; Petrunyaka VV; Khodorov BI; Evtodienko YV
    Eur J Biochem; 1986 Nov; 161(1):249-56. PubMed ID: 3780738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release.
    Moreno SN; Docampo R; Vercesi AE
    J Biol Chem; 1992 Mar; 267(9):6020-6. PubMed ID: 1556113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic acidification stimulates a calcium influx that activates Na(+)-H+ exchange in LLC-PK1.
    Burns KD; Homma T; Breyer MD; Harris RC
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F617-25. PubMed ID: 1656781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IP3-mediated cytosolic and nuclear calcium elevation in NRK-52E cells using 'caged' GPIP2.
    Davis MA; Chang SH; Trump BF
    Cell Calcium; 1995 Jun; 17(6):453-8. PubMed ID: 8521459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.