BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34901888)

  • 1. Detection of N6-methyladenosine in SARS-CoV-2 RNA by methylated RNA immunoprecipitation sequencing.
    Li N; Rana TM
    STAR Protoc; 2022 Mar; 3(1):101067. PubMed ID: 34901888
    [No Abstract]   [Full Text] [Related]  

  • 2. Methyltransferase-like 3 Modulates Severe Acute Respiratory Syndrome Coronavirus-2 RNA N6-Methyladenosine Modification and Replication.
    Zhang X; Hao H; Ma L; Zhang Y; Hu X; Chen Z; Liu D; Yuan J; Hu Z; Guan W
    mBio; 2021 Aug; 12(4):e0106721. PubMed ID: 34225491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct RNA Sequencing Reveals SARS-CoV-2 m6A Sites and Possible Differential DRACH Motif Methylation among Variants.
    Campos JHC; Maricato JT; Braconi CT; Antoneli F; Janini LMR; Briones MRS
    Viruses; 2021 Oct; 13(11):. PubMed ID: 34834915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoAIMS: efficient software for detection of enriched regions of MeRIP-Seq.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2020 Mar; 21(1):103. PubMed ID: 32171255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epitranscriptome of Vero cells infected with SARS-CoV-2 assessed by direct RNA sequencing reveals m6A pattern changes and DRACH motif biases in viral and cellular RNAs.
    Campos JHC; Alves GV; Maricato JT; Braconi CT; Antoneli FM; Janini LMR; Briones MRS
    Front Cell Infect Microbiol; 2022; 12():906578. PubMed ID: 36051243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury.
    Yu J; Zhang Y; Ma H; Zeng R; Liu R; Wang P; Jin X; Zhao Y
    Mol Brain; 2020 Jan; 13(1):11. PubMed ID: 31992337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks.
    Zhang SY; Zhang SW; Liu L; Meng J; Huang Y
    PLoS Comput Biol; 2016 Dec; 12(12):e1005287. PubMed ID: 28027310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the m
    Burgess HM; Depledge DP; Thompson L; Srinivas KP; Grande RC; Vink EI; Abebe JS; Blackaby WP; Hendrick A; Albertella MR; Kouzarides T; Stapleford KA; Wilson AC; Mohr I
    Genes Dev; 2021 Jul; 35(13-14):1005-1019. PubMed ID: 34168039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of N6‑methyladenosine modification residues (Review).
    Zhu W; Wang JZ; Xu Z; Cao M; Hu Q; Pan C; Guo M; Wei JF; Yang H
    Int J Mol Med; 2019 Jun; 43(6):2267-2278. PubMed ID: 31017262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refined RIP-seq protocol for epitranscriptome analysis with low input materials.
    Zeng Y; Wang S; Gao S; Soares F; Ahmed M; Guo H; Wang M; Hua JT; Guan J; Moran MF; Tsao MS; He HH
    PLoS Biol; 2018 Sep; 16(9):e2006092. PubMed ID: 30212448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection.
    Li N; Hui H; Bray B; Gonzalez GM; Zeller M; Anderson KG; Knight R; Smith D; Wang Y; Carlin AF; Rana TM
    Cell Rep; 2021 May; 35(6):109091. PubMed ID: 33961823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-adenosylmethionine-dependent methyltransferase inhibitor DZNep blocks transcription and translation of SARS-CoV-2 genome with a low tendency to select for drug-resistant viral variants.
    Kumar R; Khandelwal N; Chander Y; Nagori H; Verma A; Barua A; Godara B; Pal Y; Gulati BR; Tripathi BN; Barua S; Kumar N
    Antiviral Res; 2022 Jan; 197():105232. PubMed ID: 34968527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection.
    Chang JJ; Rawlinson D; Pitt ME; Taiaroa G; Gleeson J; Zhou C; Mordant FL; De Paoli-Iseppi R; Caly L; Purcell DFJ; Stinear TP; Londrigan SL; Clark MB; Williamson DA; Subbarao K; Coin LJM
    Cell Rep; 2021 May; 35(6):109108. PubMed ID: 33961822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package.
    Meng J; Lu Z; Liu H; Zhang L; Zhang S; Chen Y; Rao MK; Huang Y
    Methods; 2014 Oct; 69(3):274-81. PubMed ID: 24979058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data.
    Cui X; Zhang L; Meng J; Rao MK; Chen Y; Huang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):526-534. PubMed ID: 29610101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping N
    Hartstock K; Rentmeister A
    Chemistry; 2019 Mar; 25(14):3455-3464. PubMed ID: 30347476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic modifications of RNA and their implications in antiviral immunity.
    Paramasivam A; Priyadharsini JV
    Epigenomics; 2020 Oct; 12(19):1673-1675. PubMed ID: 33078621
    [No Abstract]   [Full Text] [Related]  

  • 18. [Recent progresses in RNA N6-methyladenosine research].
    Li YL; Yu J; Song SH
    Yi Chuan; 2013 Dec; 35(12):1340-51. PubMed ID: 24645343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. m6A-express: uncovering complex and condition-specific m6A regulation of gene expression.
    Zhang T; Zhang SW; Zhang SY; Gao SJ; Chen Y; Huang Y
    Nucleic Acids Res; 2021 Nov; 49(20):e116. PubMed ID: 34417605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The architecture of the SARS-CoV-2 RNA genome inside virion.
    Cao C; Cai Z; Xiao X; Rao J; Chen J; Hu N; Yang M; Xing X; Wang Y; Li M; Zhou B; Wang X; Wang J; Xue Y
    Nat Commun; 2021 Jun; 12(1):3917. PubMed ID: 34168138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.