BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34901920)

  • 1. Genetically encoded biosensors for evaluating NAD
    Hu Q; Wu D; Walker M; Wang P; Tian R; Wang W
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34901920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor.
    Hung YP; Yellen G
    Methods Mol Biol; 2014; 1071():83-95. PubMed ID: 24052382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo NADH/NAD
    Steinbeck J; Fuchs P; Negroni YL; Elsässer M; Lichtenauer S; Stockdreher Y; Feitosa-Araujo E; Kroll JB; Niemeier JO; Humberg C; Smith EN; Mai M; Nunes-Nesi A; Meyer AJ; Zottini M; Morgan B; Wagner S; Schwarzländer M
    Plant Cell; 2020 Oct; 32(10):3324-3345. PubMed ID: 32796121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
    Mongeon R; Venkatachalam V; Yellen G
    Antioxid Redox Signal; 2016 Oct; 25(10):553-63. PubMed ID: 26857245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD
    Chang JC; Go S; Gilglioni EH; Duijst S; Panneman DM; Rodenburg RJ; Li HL; Huang HL; Levin LR; Buck J; Verhoeven AJ; Oude Elferink RPJ
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148367. PubMed ID: 33412125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor.
    Hung YP; Albeck JG; Tantama M; Yellen G
    Cell Metab; 2011 Oct; 14(4):545-54. PubMed ID: 21982714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD
    Zhao Y; Yang Y
    Free Radic Biol Med; 2016 Nov; 100():43-52. PubMed ID: 27261194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
    Zhao Y; Wang A; Zou Y; Su N; Loscalzo J; Yang Y
    Nat Protoc; 2016 Aug; 11(8):1345-59. PubMed ID: 27362337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded probes for NAD
    Bilan DS; Belousov VV
    Free Radic Biol Med; 2016 Nov; 100():32-42. PubMed ID: 27387770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD
    Lim SL; Voon CP; Guan X; Yang Y; Gardeström P; Lim BL
    Nat Commun; 2020 Jun; 11(1):3238. PubMed ID: 32591540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.
    Lee CF; Chavez JD; Garcia-Menendez L; Choi Y; Roe ND; Chiao YA; Edgar JS; Goo YA; Goodlett DR; Bruce JE; Tian R
    Circulation; 2016 Sep; 134(12):883-94. PubMed ID: 27489254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.
    Goodman RP; Calvo SE; Mootha VK
    J Biol Chem; 2018 May; 293(20):7508-7516. PubMed ID: 29514978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH.
    Zhao Y; Yang Y
    Curr Opin Biotechnol; 2015 Feb; 31():86-92. PubMed ID: 25269782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Regulatory NADH/NAD+ Redox Biosensor for Bacteria.
    Liu Y; Landick R; Raman S
    ACS Synth Biol; 2019 Feb; 8(2):264-273. PubMed ID: 30633862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
    Williamson DH; Lund P; Krebs HA
    Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Påhlman IL; Gustafsson L; Rigoulet M; Larsson C
    Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.