BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34901920)

  • 21. Genetically encoded fluorescent sensors for intracellular NADH detection.
    Zhao Y; Jin J; Hu Q; Zhou HM; Yi J; Yu Z; Xu L; Wang X; Yang Y; Loscalzo J
    Cell Metab; 2011 Oct; 14(4):555-66. PubMed ID: 21982715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of the Peroxisomal Redox State in Living Cells Using NADPH- and NAD
    Costa CF; Li H; Hussein MAF; Yang Y; Lismont C; Fransen M
    Methods Mol Biol; 2023; 2643():183-197. PubMed ID: 36952186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of cytosolic NADH by the malate-aspartate shuttle in HuH13 human hepatoma cells.
    Matsuno T
    Int J Biochem; 1992 Feb; 24(2):313-5. PubMed ID: 1310290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
    Titov DV; Cracan V; Goodman RP; Peng J; Grabarek Z; Mootha VK
    Science; 2016 Apr; 352(6282):231-5. PubMed ID: 27124460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subcellular Characterization of Nicotinamide Adenine Dinucleotide Biosynthesis in Metastatic Melanoma by Using Organelle-Specific Biosensors.
    Gaudino F; Manfredonia I; Managò A; Audrito V; Raffaelli N; Vaisitti T; Deaglio S
    Antioxid Redox Signal; 2019 Nov; 31(15):1150-1165. PubMed ID: 31456414
    [No Abstract]   [Full Text] [Related]  

  • 28. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae.
    Rigoulet M; Aguilaniu H; Avéret N; Bunoust O; Camougrand N; Grandier-Vazeille X; Larsson C; Pahlman IL; Manon S; Gustafsson L
    Mol Cell Biochem; 2004; 256-257(1-2):73-81. PubMed ID: 14977171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human peroxisomal NAD
    Chornyi S; Costa CF; IJlst L; Fransen M; Wanders RJA; van Roermund CWT; Waterham HR
    Free Radic Biol Med; 2023 Sep; 206():22-32. PubMed ID: 37355054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial NAD
    Berthiaume JM; Kurdys JG; Muntean DM; Rosca MG
    Antioxid Redox Signal; 2019 Jan; 30(3):375-398. PubMed ID: 29073779
    [No Abstract]   [Full Text] [Related]  

  • 31. Using Fractional Intensities of Time-resolved Fluorescence to Sensitively Quantify NADH/NAD
    Chang M; Li L; Hu H; Hu Q; Wang A; Cao X; Yu X; Zhang S; Zhao Y; Chen J; Yang Y; Xu J
    Sci Rep; 2017 Jun; 7(1):4209. PubMed ID: 28646144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering.
    Wang S; Jiang W; Jin X; Qi Q; Liang Q
    Crit Rev Biotechnol; 2023 Dec; 43(8):1211-1225. PubMed ID: 36130803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments.
    Bilan DS; Matlashov ME; Gorokhovatsky AY; Schultz C; Enikolopov G; Belousov VV
    Biochim Biophys Acta; 2014 Mar; 1840(3):951-7. PubMed ID: 24286672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MitoRACE: evaluating mitochondrial function in vivo and in single cells with subcellular resolution using multiphoton NADH autofluorescence.
    Willingham TB; Zhang Y; Andreoni A; Knutson JR; Lee DY; Glancy B
    J Physiol; 2019 Nov; 597(22):5411-5428. PubMed ID: 31490555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.
    Zhao Y; Zhang Z; Zou Y; Yang Y
    Antioxid Redox Signal; 2018 Jan; 28(3):213-229. PubMed ID: 28648094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical issues in estimation of cytosolic free NAD/NADH ratio.
    Sun F; Dai C; Xie J; Hu X
    PLoS One; 2012; 7(5):e34525. PubMed ID: 22570687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.
    Overkamp KM; Bakker BM; Kötter P; van Tuijl A; de Vries S; van Dijken JP; Pronk JT
    J Bacteriol; 2000 May; 182(10):2823-30. PubMed ID: 10781551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of metabolite shuttles for export of chloroplast and mitochondrial ATP and NADPH increases the cytosolic NADH:NAD
    Moreno-García B; López-Calcagno PE; Raines CA; Sweetlove LJ
    J Plant Physiol; 2022 Jan; 268():153578. PubMed ID: 34911031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.