These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34902159)

  • 1. A GPU-accelerated framework for individualized estimation of organ doses in digital tomosynthesis.
    Sharma S; Kapadia A; Brown J; Segars WP; Bolch W; Samei E
    Med Phys; 2022 Feb; 49(2):891-900. PubMed ID: 34902159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose coefficients for organ dosimetry in tomosynthesis imaging of adults and pediatrics across diverse protocols.
    Sharma S; Kapadia A; Ria F; Segars WP; Samei E
    Med Phys; 2022 Aug; 49(8):5439-5450. PubMed ID: 35690885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A real-time Monte Carlo tool for individualized dose estimations in clinical CT.
    Sharma S; Kapadia A; Fu W; Abadi E; Segars WP; Samei E
    Phys Med Biol; 2019 Nov; 64(21):215020. PubMed ID: 31539892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High correlation between radiation dose estimates for 256-slice CT obtained by highly parallelized hybrid Monte Carlo computation and solid-state metal-oxide semiconductor field-effect transistor measurements in physical anthropomorphic phantoms.
    Prinsen P; Trattner S; Wiegert J; Gerland EL; Shefer E; Morton T; Thompson CM; Cheng B; Halliburton SS; Einstein AJ
    Med Phys; 2019 Nov; 46(11):5216-5226. PubMed ID: 31442300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoroscopy X-Ray Organ-Specific Dosimetry System (FLUXOR) for Estimation of Organ Doses and Their Uncertainties in the Canadian Fluoroscopy Cohort Study.
    Apostoaei AI; Thomas BA; Hoffman FO; Kocher DC; Thiessen KM; Borrego D; Lee C; Simon SL; Zablotska LB
    Radiat Res; 2021 Apr; 195(4):385-396. PubMed ID: 33544842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing.
    Peng Z; Fang X; Yan P; Shan H; Liu T; Pei X; Wang G; Liu B; Kalra MK; Xu XG
    Med Phys; 2020 Jun; 47(6):2526-2536. PubMed ID: 32155670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a deterministic linear Boltzmann transport equation solver for rapid CT dose computation using physical dose measurements in pediatric phantoms.
    Principi S; Lu Y; Liu Y; Wang A; Maslowski A; Wareing T; Van Heteren J; Schmidt TG
    Med Phys; 2021 Dec; 48(12):8075-8088. PubMed ID: 34669975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation.
    Rupcich F; Badal A; Kyprianou I; Schmidt TG
    Med Phys; 2012 Sep; 39(9):5336-46. PubMed ID: 22957601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organ doses from CT localizer radiographs: Development, validation, and application of a Monte Carlo estimation technique.
    Hoye J; Sharma S; Zhang Y; Fu W; Ria F; Kapadia A; Segars WP; Wilson J; Samei E
    Med Phys; 2019 Nov; 46(11):5262-5272. PubMed ID: 31442324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus.
    Zhang Y; Li X; Segars WP; Samei E
    Med Phys; 2014 Feb; 41(2):023901. PubMed ID: 24506654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific Monte Carlo-based organ dose estimates in spiral CT via optical 3D body scanning and adaptation of a voxelized phantom dataset: proof-of-principle.
    Maddaloni FS; Sarno A; Mettivier G; Clemente S; Oliviero C; Ricciardi R; Varallo A; Russo P
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36898163
    [No Abstract]   [Full Text] [Related]  

  • 13. Reference dataset for benchmarking fetal doses derived from Monte Carlo simulations of CT exams.
    Hardy AJ; Bostani M; Angel E; Cagnon C; Sechopoulos I; McNitt-Gray MF
    Med Phys; 2021 Jan; 48(1):523-532. PubMed ID: 33128259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility and accuracy of UF/NCI phantoms and Monte Carlo retrospective dosimetry in children treated on National Wilms Tumor Study protocols.
    Kalapurakal JA; Gopalakrishnan M; Mille M; Helenowski I; Peterson S; Rigsby C; Laurie F; Jung JW; Fitzgerald TJ; Lee C
    Pediatr Blood Cancer; 2018 Dec; 65(12):e27395. PubMed ID: 30101560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward automated and personalized organ dose determination in CT examinations - A comparison of two tissue characterization models for Monte Carlo organ dose calculation with a Therapy Planning System.
    Källman HE; Traneus E; Ahnesjö A
    Med Phys; 2019 Feb; 46(2):1012-1023. PubMed ID: 30582891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A database of 40 patient-based computational models for benchmarking organ dose estimates in CT.
    Samei E; Ria F; Tian X; Segars PW
    Med Phys; 2020 Dec; 47(12):6562-6566. PubMed ID: 32628272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures.
    Marshall EL; Borrego D; Tran T; Fudge JC; Bolch WE
    Phys Med Biol; 2018 Mar; 63(5):055006. PubMed ID: 29405126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic linear Boltzmann transport equation solver for patient-specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models.
    Principi S; Wang A; Maslowski A; Wareing T; Jordan P; Schmidt TG
    Med Phys; 2020 Dec; 47(12):6470-6483. PubMed ID: 32981038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of patient-specific computational models for organ dose estimation in radiological imaging.
    Xie T; Akhavanallaf A; Zaidi H
    Med Phys; 2019 May; 46(5):2403-2411. PubMed ID: 30854654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pitfalls in interventional X-ray organ dose assessment-combined experimental and computational phantom study: application to prostatic artery embolization.
    Roser P; Birkhold A; Zhong X; Ochs P; Stepina E; Kowarschik M; Fahrig R; Maier A
    Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1859-1869. PubMed ID: 31377964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.