BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34902211)

  • 1. Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources.
    Fouilloux H; Rager MN; Ríos P; Conejero S; Thomas CM
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202113443. PubMed ID: 34902211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-Aldehyde Polycondensation for Bio-based Adaptable and Degradable Phenolic Polymers.
    Jin Y; Hu C; Wang J; Ding Y; Shi J; Wang Z; Xu S; Yuan L
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202305677. PubMed ID: 37204428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aliphatic polyester block polymers: renewable, degradable, and sustainable.
    Hillmyer MA; Tolman WB
    Acc Chem Res; 2014 Aug; 47(8):2390-6. PubMed ID: 24852135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydrocoupling Polymerization: Poly(silylether) Synthesis by Using an Iron β-Diketiminate Catalyst.
    Farcaş-Johnson MA; Kyne SH; Webster RL
    Chemistry; 2022 Nov; 28(62):e202201642. PubMed ID: 35856289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Elastomers from Renewable Biomass.
    Wang Z; Yuan L; Tang C
    Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Biobased Recyclable Polymers for Plastics.
    Hatti-Kaul R; Nilsson LJ; Zhang B; Rehnberg N; Lundmark S
    Trends Biotechnol; 2020 Jan; 38(1):50-67. PubMed ID: 31151764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Pot Catalysis: A Privileged Approach for Sustainable Polymers?
    Upitak K; Thomas CM
    Acc Chem Res; 2022 Aug; 55(16):2168-2179. PubMed ID: 35881825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology.
    Debuissy T; Pollet E; Avérous L
    ChemSusChem; 2018 Nov; 11(22):3836-3870. PubMed ID: 30203918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile Manganese Catalysis for the Synthesis of Poly(silylether)s from Diols and Dicarbonyls with Hydrosilanes.
    Vijjamarri S; Chidara VK; Du G
    ACS Omega; 2017 Feb; 2(2):582-591. PubMed ID: 31457456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Synthesis of Biobased Polyesters and Polyamides.
    Jiang Y; Loos K
    Polymers (Basel); 2016 Jun; 8(7):. PubMed ID: 30974520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biobased Transesterification Vitrimers.
    Kumar A; Connal LA
    Macromol Rapid Commun; 2023 Apr; 44(7):e2200892. PubMed ID: 36661130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on the chemo-enzymatic upgrading of renewable biomass to 5-Hydroxymethylfurfural.
    Saikia K; Rathankumar AK; Ramachandran K; Sridharan H; Bohra P; Bharadwaj N; Vyas A; Kumar VV
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1218-1226. PubMed ID: 31994981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicatalytic Transformation of (Meth)acrylic Acids: a One-Pot Approach to Biobased Poly(meth)acrylates.
    Fouilloux H; Qiang W; Robert C; Placet V; Thomas CM
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19374-19382. PubMed ID: 34152679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable Isohexide-Based, Hydrolytically Degradable Poly(silyl ether)s with High Thermal Stability.
    Vijjamarri S; Hull M; Kolodka E; Du G
    ChemSusChem; 2018 Sep; 11(17):2881-2888. PubMed ID: 29958332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-Loop Recyclable Poly(imine-acetal)s with Dual-Cleavable Bonds for Primary Building Block Recovery.
    Saito K; Türel T; Eisenreich F; Tomović Ž
    ChemSusChem; 2023 Nov; 16(21):e202301017. PubMed ID: 37518676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(silyl ether)s as Degradable and Sustainable Materials: Synthesis and Applications.
    Zotov V; Vijjamarri S; Mousavi SD; Du G
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Biobased Synthesis of Acrylic Acid.
    Hermens JGH; Jensma A; Feringa BL
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202112618. PubMed ID: 34783426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of glycomonomers via biocatalytic methods.
    Adharis A; Loos K
    Methods Enzymol; 2019; 627():215-247. PubMed ID: 31630741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization and chemical degradation of poly(ester-triazole)s derived from d-galactose.
    Rivas MV; Petroselli G; Erra-Balsells R; Varela O; Kolender AA
    RSC Adv; 2019 Mar; 9(17):9860-9869. PubMed ID: 35520726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.