These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34902215)

  • 1. Efficacy of hydrogels for repair of traumatic spinal cord injuries: A systematic review and meta-analysis.
    Ayar Z; Hassannejad Z; Shokraneh F; Saderi N; Rahimi-Movaghar V
    J Biomed Mater Res B Appl Biomater; 2022 Jun; 110(6):1460-1478. PubMed ID: 34902215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of low-level laser therapy on pathophysiology and locomotor recovery after traumatic spinal cord injuries: a systematic review and meta-analysis.
    Ayar Z; Gholami B; Piri SM; Kaveh M; Baigi V; Ghodsi Z; Hassannejad Z; Rahimi-Movaghar V
    Lasers Med Sci; 2022 Feb; 37(1):61-75. PubMed ID: 33791887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats.
    Chen BK; Madigan NN; Hakim JS; Dadsetan M; McMahon SS; Yaszemski MJ; Windebank AJ
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e398-e407. PubMed ID: 28296347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury.
    Hassannejad Z; Zadegan SA; Vaccaro AR; Rahimi-Movaghar V; Sabzevari O
    Injury; 2019 Feb; 50(2):278-285. PubMed ID: 30595411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aligned hydrogel tubes guide regeneration following spinal cord injury.
    Dumont CM; Carlson MA; Munsell MK; Ciciriello AJ; Strnadova K; Park J; Cummings BJ; Anderson AJ; Shea LD
    Acta Biomater; 2019 Mar; 86():312-322. PubMed ID: 30610918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.
    Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC
    J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities.
    He X; Li Y; Deng B; Lin A; Zhang G; Ma M; Wang Y; Yang Y; Kang X
    Cell Prolif; 2022 Sep; 55(9):e13275. PubMed ID: 35754255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury.
    Wei YT; He Y; Xu CL; Wang Y; Liu BF; Wang XM; Sun XD; Cui FZ; Xu QY
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):110-7. PubMed ID: 20725955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of Heat-Shock Preconditioned Neural Stem/Progenitor Cells Combined with RGD-Functionalised Hydrogel Promotes Spinal Cord Functional Recovery in a Rat Hemi-Transection Model.
    Kim WK; Kang BJ
    Stem Cell Rev Rep; 2024 Jan; 20(1):283-300. PubMed ID: 37821771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.
    Günther MI; Weidner N; Müller R; Blesch A
    Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation.
    Estrada V; Brazda N; Schmitz C; Heller S; Blazyca H; Martini R; Müller HW
    Neurobiol Dis; 2014 Jul; 67():165-79. PubMed ID: 24713436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection.
    Buzoianu-Anguiano V; Orozco-Suárez S; García-Vences E; Caballero-Chacón S; Guizar-Sahagún G; Chavez-Sanchez L; Grijalva I
    Neural Plast; 2015; 2015():389520. PubMed ID: 26634157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligodendrogliogenesis and Axon Remyelination after Traumatic Spinal Cord Injuries in Animal Studies: A Systematic Review.
    Hassannejad Z; Shakouri-Motlagh A; Mokhatab M; Zadegan SA; Sharif-Alhoseini M; Shokraneh F; Rahimi-Movaghar V
    Neuroscience; 2019 Mar; 402():37-50. PubMed ID: 30685542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Hydrogel-Fiber on Cystic Cavity after Spinal Cord Injury.
    Zhou X; Du J; Jia X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1070-1073. PubMed ID: 31946079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration.
    Chedly J; Soares S; Montembault A; von Boxberg Y; Veron-Ravaille M; Mouffle C; Benassy MN; Taxi J; David L; Nothias F
    Biomaterials; 2017 Sep; 138():91-107. PubMed ID: 28554011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.
    Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E
    Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats.
    Kaneko A; Matsushita A; Sankai Y
    Biomed Mater; 2015 Jan; 10(1):015008. PubMed ID: 25585935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.