These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34902215)
21. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547 [TBL] [Abstract][Full Text] [Related]
22. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Jain A; Kim YT; McKeon RJ; Bellamkonda RV Biomaterials; 2006 Jan; 27(3):497-504. PubMed ID: 16099038 [TBL] [Abstract][Full Text] [Related]
24. Anisotropic Alginate Hydrogels Promote Axonal Growth across Chronic Spinal Cord Transections after Scar Removal. Huang L; Wang Y; Zhu M; Wan X; Zhang H; Lei T; Blesch A; Liu S ACS Biomater Sci Eng; 2020 Apr; 6(4):2274-2286. PubMed ID: 33455324 [TBL] [Abstract][Full Text] [Related]
25. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
26. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair. Syková E; Jendelová P; Urdzíková L; Lesný P; Hejcl A Cell Mol Neurobiol; 2006; 26(7-8):1113-29. PubMed ID: 16633897 [TBL] [Abstract][Full Text] [Related]
27. Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme. Sánchez-Torres S; Díaz-Ruíz A; Ríos C; Olayo MG; Cruz GJ; Olayo R; Morales J; Mondragón-Lozano R; Fabela-Sánchez O; Orozco-Barrios C; Coyoy-Salgado A; Orozco-Suárez S; González-Ruiz C; Álvarez-Mejía L; Morales-Guadarrama A; Buzoianu-Anguiano V; Damián-Matsumura P; Salgado-Ceballos H J Mater Sci Mater Med; 2020 Jun; 31(7):58. PubMed ID: 32607849 [TBL] [Abstract][Full Text] [Related]
28. Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels. Pawar K; Prang P; Müller R; Caioni M; Bogdahn U; Kunz W; Weidner N Acta Biomater; 2015 Nov; 27():131-139. PubMed ID: 26310676 [TBL] [Abstract][Full Text] [Related]
29. Therapeutic effects and long-term outcomes of HMGB1-targeted therapy in rats and mice with traumatic spinal cord injury: A systematic review and meta-analysis. Deng C; Deng L; Lv J; Sun L Front Neurosci; 2022; 16():968791. PubMed ID: 36161176 [TBL] [Abstract][Full Text] [Related]
31. The Role of Intraspinal Administration of Self-Assembled Peptide on Locomotion Recovery After Spinal Cord Injury: A Systematic Review and Meta-Analysis Study. Yousefifard M; Ramezani F; Vaccaro AR; Hosseini M; Rahimi-Movaghar V Neuromodulation; 2023 Aug; 26(6):1171-1178. PubMed ID: 35227580 [TBL] [Abstract][Full Text] [Related]
32. Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats. Yu F; Li P; Du S; Lui KW; Lin Y; Chen L; Ren Q; Wang J; Mei J; Xiao J; Zhu J J Biomed Mater Res A; 2021 May; 109(5):779-787. PubMed ID: 32720459 [TBL] [Abstract][Full Text] [Related]
33. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703 [TBL] [Abstract][Full Text] [Related]
34. Rationally Designed, Self-Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Ye J; Jin S; Cai W; Chen X; Zheng H; Zhang T; Lu W; Li X; Liang C; Chen Q; Wang Y; Gu X; Yu B; Chen Z; Wang X Adv Healthc Mater; 2021 Jul; 10(13):e2100242. PubMed ID: 34029000 [TBL] [Abstract][Full Text] [Related]
35. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. Hejcl A; Urdzikova L; Sedy J; Lesny P; Pradny M; Michalek J; Burian M; Hajek M; Zamecnik J; Jendelova P; Sykova E J Neurosurg Spine; 2008 Jan; 8(1):67-73. PubMed ID: 18173349 [TBL] [Abstract][Full Text] [Related]
36. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH J Neurotrauma; 2004 Jun; 21(6):789-804. PubMed ID: 15253805 [TBL] [Abstract][Full Text] [Related]
37. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Zukor KA; Kent DT; Odelberg SJ Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291 [TBL] [Abstract][Full Text] [Related]
38. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. Woerly S; Doan VD; Sosa N; de Vellis J; Espinosa-Jeffrey A J Neurosci Res; 2004 Jan; 75(2):262-272. PubMed ID: 14705147 [TBL] [Abstract][Full Text] [Related]