BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34902674)

  • 1. An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces.
    Cummins C; Flamant Q; Dwivedi R; Alvarez-Fernandez A; Demazy N; Bentaleb A; Pound-Lana G; Zelsmann M; Barois P; Hadziioannou G; Baron A; Fleury G; Ponsinet V
    J Colloid Interface Sci; 2022 Mar; 609():375-383. PubMed ID: 34902674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-scale ultra-broadband perfect absorber based on ultrathin Al-SiO
    Li H; Zhang C; Liu XC; Yu P; Chen WD; Xie ZW; Tang MJ; Zheng J; Li L
    Opt Express; 2022 Aug; 30(17):30911-30917. PubMed ID: 36242186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells.
    Liu D; Wang L; Cui Q; Guo LJ
    Adv Sci (Weinh); 2018 Oct; 5(10):1800836. PubMed ID: 30356903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface.
    Huo D; Ma X; Su H; Wang C; Zhao H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide.
    Badloe T; Kim I; Rho J
    Sci Rep; 2020 Mar; 10(1):4522. PubMed ID: 32161273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces.
    Bhattarai K; Silva S; Song K; Urbas A; Lee SJ; Ku Z; Zhou J
    Sci Rep; 2017 Sep; 7(1):10569. PubMed ID: 28874696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large area Al
    Alvarez-Fernandez A; Nallet F; Fontaine P; Cummins C; Hadziioannou G; Barois P; Fleury G; Ponsinet V
    RSC Adv; 2020 Nov; 10(67):41088-41097. PubMed ID: 35519210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin film block copolymer self-assembly for nanophotonics.
    Kulkarni AA; Doerk GS
    Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35358955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks.
    Abedini Dereshgi S; Ghobadi A; Hajian H; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):14872. PubMed ID: 29093519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully functionalized metamaterial perfect absorber with simple design and implementation.
    Fu SM; Zhong YK; Tu MH; Chen BR; Lin A
    Sci Rep; 2016 Oct; 6():36244. PubMed ID: 27782181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-atomically flat, chemically homogeneous, electrically conductive optical metasurface.
    Kim JU; Jeon S; Heo M; Kim HM; Kim R; Kim N; Lee YH; Shin J
    Nanoscale; 2019 May; 11(19):9580-9586. PubMed ID: 31062774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.
    Yao Y; Shankar R; Kats MA; Song Y; Kong J; Loncar M; Capasso F
    Nano Lett; 2014 Nov; 14(11):6526-32. PubMed ID: 25310847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor.
    Rifat AA; Rahmani M; Xu L; Miroshnichenko AE
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29954060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Nanoscale Heat Generation with Lithography-Free Metasurface Absorbers.
    Stewart JW; Nebabu T; Mikkelsen MH
    Nano Lett; 2022 Jul; 22(13):5151-5157. PubMed ID: 35776079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity.
    Wang H; Zhang Y; Ji C; Zhang C; Liu D; Zhang Z; Lu Z; Tan J; Guo LJ
    Adv Sci (Weinh); 2019 Oct; 6(19):1901320. PubMed ID: 31592425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.