BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34902690)

  • 1. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology.
    Li H; Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel.
    Zhang L; Wang Y; Wei Y; An D
    Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module.
    Yang D; Zhou Y; Jie Y; Li Q; Shi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124166. PubMed ID: 38493512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of Deoxynivalenol Levels of Barley Kernels Using Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Network.
    Fan KJ; Liu BY; Su WH
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.
    Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface.
    Zhang L; Rao Z; Ji H
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent identification of film on cotton based on hyperspectral imaging and convolutional neural network.
    Liu Z; Zhao L; Yu X; Zhang Y; Cui J; Ni C; Zhang L
    Sci Prog; 2022; 105(4):368504221137461. PubMed ID: 36514818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of Unsound Wheat Kernels Based on Improved Mask RCNN.
    Shen R; Zhen T; Li Z
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multivariate algorithm for identifying contaminated peanut using visible and near-infrared hyperspectral imaging.
    Guo Z; Zhang J; Sun J; Dong H; Huang J; Geng L; Li S; Jing X; Guo Y; Sun X
    Talanta; 2024 Jan; 267():125187. PubMed ID: 37722342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive detection and classification of textile fibres based on hyperspectral imaging and 1D-CNN.
    Huang J; He H; Lv R; Zhang G; Zhou Z; Wang X
    Anal Chim Acta; 2022 Sep; 1224():340238. PubMed ID: 35998989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations.
    Zhang Y; Lu G; Zhou X; Cheng JH
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat Kernel Variety Identification Based on a Large Near-Infrared Spectral Dataset and a Novel Deep Learning-Based Feature Selection Method.
    Zhou L; Zhang C; Taha MF; Wei X; He Y; Qiu Z; Liu Y
    Front Plant Sci; 2020; 11():575810. PubMed ID: 33240294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels.
    Zhang D; Chen G; Zhang H; Jin N; Gu C; Weng S; Wang Q; Chen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118344. PubMed ID: 32330824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].
    Yi T; Lin C; En-Ci J; Ji-Zhong Y
    Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5438-5442. PubMed ID: 33350203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of hyperspectral imaging technology in the rapid identification of microplastics in farmland soil.
    Ai W; Liu S; Liao H; Du J; Cai Y; Liao C; Shi H; Lin Y; Junaid M; Yue X; Wang J
    Sci Total Environ; 2022 Feb; 807(Pt 3):151030. PubMed ID: 34673067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of
    Wu N; Zhang C; Bai X; Du X; He Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Bacterial Blight Resistant Rice Seeds Using Terahertz Imaging and Hyperspectral Imaging Combined With Convolutional Neural Network.
    Zhang J; Yang Y; Feng X; Xu H; Chen J; He Y
    Front Plant Sci; 2020; 11():821. PubMed ID: 32670316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.