These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34903012)

  • 1. UPFPSR: a ubiquitylation predictor for plant through combining sequence information and random forest.
    Yin S; Zheng J; Jia C; Zou Q; Lin Z; Shi H
    Math Biosci Eng; 2022 Jan; 19(1):775-791. PubMed ID: 34903012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating Deep Learning With Word Embedding to Identify Plant Ubiquitylation Sites.
    Wang H; Wang Z; Li Z; Lee TY
    Front Cell Dev Biol; 2020; 8():572195. PubMed ID: 33102477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites.
    Siraj A; Lim DY; Tayara H; Chong KT
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    BMC Genomics; 2019 Apr; 19(Suppl 9):984. PubMed ID: 30999859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix.
    Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites.
    Chen L; Liu L; Su H; Xu Y
    Methods; 2024 Jul; 227():27-34. PubMed ID: 38679187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Succinylation sites from protein sequences using ensemble support vector machine.
    Ning Q; Zhao X; Bao L; Ma Z; Zhao X
    BMC Bioinformatics; 2018 Jun; 19(1):237. PubMed ID: 29940836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formator: Predicting Lysine Formylation Sites Based on the Most Distant Undersampling and Safe-Level Synthetic Minority Oversampling.
    Jia C; Zhang M; Fan C; Li F; Song J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1937-1945. PubMed ID: 31804942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iGluK-Deep: computational identification of lysine glutarylation sites using deep neural networks with general pseudo amino acid compositions.
    Naseer S; Ali RF; Khan YD; Dominic PDD
    J Biomol Struct Dyn; 2022; 40(22):11691-11704. PubMed ID: 34396935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of lysine ubiquitylation with ensemble classifier and feature selection.
    Zhao X; Li X; Ma Z; Yin M
    Int J Mol Sci; 2011; 12(12):8347-61. PubMed ID: 22272076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ensemble Deep Learning based Predictor for Simultaneously Identifying Protein Ubiquitylation and SUMOylation Sites.
    He F; Li J; Wang R; Zhao X; Han Y
    BMC Bioinformatics; 2021 Oct; 22(1):519. PubMed ID: 34689734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.