These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34903012)

  • 21. DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species.
    Liu Y; Li A; Zhao XM; Wang M
    Methods; 2021 Aug; 192():103-111. PubMed ID: 32791338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids.
    Chandra A; Sharma A; Dehzangi A; Ranganathan S; Jokhan A; Chou KC; Tsunoda T
    Sci Rep; 2018 Dec; 8(1):17923. PubMed ID: 30560923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of lysine ubiquitination with mRMR feature selection and analysis.
    Cai Y; Huang T; Hu L; Shi X; Xie L; Li Y
    Amino Acids; 2012 Apr; 42(4):1387-95. PubMed ID: 21267749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling.
    Zhu Y; Jia C; Li F; Song J
    Anal Biochem; 2020 Mar; 593():113592. PubMed ID: 31968210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model.
    Qiu WR; Xiao X; Lin WZ; Chou KC
    J Biomol Struct Dyn; 2015; 33(8):1731-42. PubMed ID: 25248923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier.
    Liu X; Zhu B; Dai XW; Xu ZA; Li R; Qian Y; Lu YP; Zhang W; Liu Y; Zheng J
    BMC Genomics; 2023 Dec; 24(1):765. PubMed ID: 38082413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network.
    Khalili E; Ramazi S; Ghanati F; Kouchaki S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33419274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.
    López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T
    BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deepro-Glu: combination of convolutional neural network and Bi-LSTM models using ProtBert and handcrafted features to identify lysine glutarylation sites.
    Wang X; Ding Z; Wang R; Lin X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PseAraUbi: predicting arabidopsis ubiquitination sites by incorporating the physico-chemical and structural features.
    Wang W; Zhang Y; Liu D; Zhang H; Wang X; Zhou Y
    Plant Mol Biol; 2022 Sep; 110(1-2):81-92. PubMed ID: 35773617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites.
    Ning Q; Qi Z; Wang Y; Deng A; Chen C
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.