These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 34903058)

  • 1. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth.
    Wilkes RA; Waldbauer J; Aristilde L
    mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways.
    Nikel PI; Chavarría M; Fuhrer T; Sauer U; de Lorenzo V
    J Biol Chem; 2015 Oct; 290(43):25920-32. PubMed ID: 26350459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in
    Kukurugya MA; Mendonca CM; Solhtalab M; Wilkes RA; Thannhauser TW; Aristilde L
    J Biol Chem; 2019 May; 294(21):8464-8479. PubMed ID: 30936206
    [No Abstract]   [Full Text] [Related]  

  • 4. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil
    Mendonca CM; Yoshitake S; Wei H; Werner A; Sasnow SS; Thannhauser TW; Aristilde L
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32358-32369. PubMed ID: 33273114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources.
    Dolan SK; Kohlstedt M; Trigg S; Vallejo Ramirez P; Kaminski CF; Wittmann C; Welch M
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184246
    [No Abstract]   [Full Text] [Related]  

  • 6. The functional structure of central carbon metabolism in Pseudomonas putida KT2440.
    Sudarsan S; Dethlefsen S; Blank LM; Siemann-Herzberg M; Schmid A
    Appl Environ Microbiol; 2014 Sep; 80(17):5292-303. PubMed ID: 24951791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization.
    Wilkes RA; Mendonca CM; Aristilde L
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.
    Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A
    BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria.
    Volke DC; Olavarría K; Nikel PI
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress.
    Chavarría M; Nikel PI; Pérez-Pantoja D; de Lorenzo V
    Environ Microbiol; 2013 Jun; 15(6):1772-85. PubMed ID: 23301697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways.
    Pastor JM; Borges N; Pagán JP; Castaño-Cerezo S; Csonka LN; Goodner BW; Reynolds KA; Gonçalves LG; Argandoña M; Nieto JJ; Vargas C; Bernal V; Cánovas M
    Microb Cell Fact; 2019 Aug; 18(1):134. PubMed ID: 31409414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism.
    Chavarría M; Kleijn RJ; Sauer U; Pflüger-Grau K; de Lorenzo V
    mBio; 2012; 3(2):. PubMed ID: 22434849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
    Bolten CJ; Heinzle E; Müller R; Wittmann C
    J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling of Carbon Metabolism during Sulfoglycolysis in Escherichia coli.
    Mui JW; De Souza DP; Saunders EC; McConville MJ; Williams SJ
    Appl Environ Microbiol; 2023 Feb; 89(2):e0201622. PubMed ID: 36728421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disproportionate Carbon Dioxide Efflux in Bacterial Metabolic Pathways for Different Organic Substrates Leads to Variable Contribution to Carbon-Use Efficiency.
    Mendonca CM; Zhang L; Waldbauer JR; Aristilde L
    Environ Sci Technol; 2024 Jun; 58(25):11041-11052. PubMed ID: 38860668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erratum for Wilkes et al., "Analogous Metabolic Decoupling in
    Wilkes RA; Waldbauer J; Aristilde L
    mBio; 2024 Mar; 15(3):e0335223. PubMed ID: 38315009
    [No Abstract]   [Full Text] [Related]  

  • 18. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.
    La Rosa R; Nogales J; Rojo F
    Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating metabolic demand as an engineering strategy in
    Tiso T; Sabelhaus P; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Metab Eng Commun; 2016 Dec; 3():234-244. PubMed ID: 29142825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and regulatory rearrangements underlying efficient D-xylose utilization in engineered Pseudomonas putida S12.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    J Biol Chem; 2012 Apr; 287(18):14606-14. PubMed ID: 22416130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.