BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34903668)

  • 1. Theta activity paradoxically boosts gamma and ripple frequency sensitivity in prefrontal interneurons.
    Merino RM; Leon-Pinzon C; Stühmer W; Möck M; Staiger JF; Wolf F; Neef A
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory activity in developing prefrontal networks results from theta-gamma-modulated synaptic inputs.
    Bitzenhofer SH; Sieben K; Siebert KD; Spehr M; Hanganu-Opatz IL
    Cell Rep; 2015 Apr; 11(3):486-97. PubMed ID: 25865885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
    Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA
    J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb.
    Fukunaga I; Herb JT; Kollo M; Boyden ES; Schaefer AT
    Nat Neurosci; 2014 Sep; 17(9):1208-16. PubMed ID: 24997762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice.
    Cho KK; Hoch R; Lee AT; Patel T; Rubenstein JL; Sohal VS
    Neuron; 2015 Mar; 85(6):1332-43. PubMed ID: 25754826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition-induced theta resonance in cortical circuits.
    Stark E; Eichler R; Roux L; Fujisawa S; Rotstein HG; Buzsáki G
    Neuron; 2013 Dec; 80(5):1263-76. PubMed ID: 24314731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO
    J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid β oligomers in vivo.
    Chung H; Park K; Jang HJ; Kohl MM; Kwag J
    Brain Struct Funct; 2020 Apr; 225(3):935-954. PubMed ID: 32107637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.
    Unal G; Crump MG; Viney TJ; Éltes T; Katona L; Klausberger T; Somogyi P
    Brain Struct Funct; 2018 Jun; 223(5):2409-2432. PubMed ID: 29500537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling fast and slow gamma oscillations with interneurons of different subtype.
    Keeley S; Fenton AA; Rinzel J
    J Neurophysiol; 2017 Mar; 117(3):950-965. PubMed ID: 27927782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala.
    Stujenske JM; Likhtik E; Topiwala MA; Gordon JA
    Neuron; 2014 Aug; 83(4):919-33. PubMed ID: 25144877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of prefrontal network activity by respiration-related oscillations.
    Biskamp J; Bartos M; Sauer JF
    Sci Rep; 2017 Mar; 7():45508. PubMed ID: 28349959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task.
    Tamura M; Spellman TJ; Rosen AM; Gogos JA; Gordon JA
    Nat Commun; 2017 Dec; 8(1):2182. PubMed ID: 29259151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interneuron Deficit Associates Attenuated Network Synchronization to Mismatch of Energy Supply and Demand in Aging Mouse Brains.
    Jessen SB; Mathiesen C; Lind BL; Lauritzen M
    Cereb Cortex; 2017 Jan; 27(1):646-659. PubMed ID: 26514162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3.
    Salib M; Joshi A; Katona L; Howarth M; Micklem BR; Somogyi P; Viney TJ
    J Neurosci; 2019 Jun; 39(23):4527-4549. PubMed ID: 30926750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal Neural Circuits Respond to Optogenetic Pacing of Theta Frequencies by Generating Accelerated Oscillation Frequencies.
    Zutshi I; Brandon MP; Fu ML; Donegan ML; Leutgeb JK; Leutgeb S
    Curr Biol; 2018 Apr; 28(8):1179-1188.e3. PubMed ID: 29628373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network Asynchrony Underlying Increased Broadband Gamma Power.
    Guyon N; Zacharias LR; Fermino de Oliveira E; Kim H; Leite JP; Lopes-Aguiar C; Carlén M
    J Neurosci; 2021 Mar; 41(13):2944-2963. PubMed ID: 33593859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
    Butler JL; Mendonça PR; Robinson HP; Paulsen O
    J Neurosci; 2016 Apr; 36(15):4155-69. PubMed ID: 27076416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex.
    Ding C; Emmenegger V; Schaffrath K; Feldmeyer D
    Cereb Cortex; 2021 Jan; 31(1):32-47. PubMed ID: 32829414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.