These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34903764)

  • 1. Global cooling induced by biophysical effects of bioenergy crop cultivation.
    Wang J; Li W; Ciais P; Li LZX; Chang J; Goll D; Gasser T; Huang X; Devaraju N; Boucher O
    Nat Commun; 2021 Dec; 12(1):7255. PubMed ID: 34903764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature Changes Induced by Biogeochemical and Biophysical Effects of Bioenergy Crop Cultivation.
    Wang J; Ciais P; Gasser T; Chang J; Tian H; Zhao Z; Zhu L; Li Z; Li W
    Environ Sci Technol; 2023 Feb; 57(6):2474-2483. PubMed ID: 36723918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation.
    Li Z; Ciais P; Wright JS; Wang Y; Liu S; Wang J; Li LZX; Lu H; Huang X; Zhu L; Goll DS; Li W
    Nat Commun; 2023 Jul; 14(1):4096. PubMed ID: 37433799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries.
    Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F
    J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.
    Krause A; Pugh TAM; Bayer AD; Li W; Leung F; Bondeau A; Doelman JC; Humpenöder F; Anthoni P; Bodirsky BL; Ciais P; Müller C; Murray-Tortarolo G; Olin S; Popp A; Sitch S; Stehfest E; Arneth A
    Glob Chang Biol; 2018 Jul; 24(7):3025-3038. PubMed ID: 29569788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity.
    Hanssen SV; Steinmann ZJN; Daioglou V; Čengić M; Van Vuuren DP; Huijbregts MAJ
    Glob Change Biol Bioenergy; 2022 Mar; 14(3):307-321. PubMed ID: 35875590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States.
    Le PV; Kumar P; Drewry DT
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15085-90. PubMed ID: 21876137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)?
    Jones MB; Albanito F
    Glob Chang Biol; 2020 Oct; 26(10):5358-5364. PubMed ID: 32726492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed use of bioenergy crops might threaten climate and food security.
    Xu S; Wang R; Gasser T; Ciais P; Peñuelas J; Balkanski Y; Boucher O; Janssens IA; Sardans J; Clark JH; Cao J; Xing X; Chen J; Wang L; Tang X; Zhang R
    Nature; 2022 Sep; 609(7926):299-306. PubMed ID: 36071193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergy Crops for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use.
    Li W; Ciais P; Han M; Zhao Q; Chang J; Goll DS; Zhu L; Wang J
    Environ Sci Technol; 2021 Aug; 55(15):10654-10661. PubMed ID: 34288664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global yield dataset for major lignocellulosic bioenergy crops based on field measurements.
    Li W; Ciais P; Makowski D; Peng S
    Sci Data; 2018 Aug; 5():180169. PubMed ID: 30129935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States.
    Baik E; Sanchez DL; Turner PA; Mach KJ; Field CB; Benson SM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3290-3295. PubMed ID: 29531081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate vs Energy Security: Quantifying the Trade-offs of BECCS Deployment and Overcoming Opportunity Costs on Set-Aside Land.
    Blanc-Betes E; Gomez-Casanovas N; Hartman MD; Hudiburg TW; Khanna M; Parton WJ; DeLucia EH
    Environ Sci Technol; 2023 Dec; 57(48):19732-19748. PubMed ID: 37934080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can bioenergy carbon capture and storage aggravate global water crisis?
    Hu B; Zhang Y; Li Y; Teng Y; Yue W
    Sci Total Environ; 2020 Apr; 714():136856. PubMed ID: 32018988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequence of climate mitigation on the risk of hunger.
    Hasegawa T; Fujimori S; Shin Y; Tanaka A; Takahashi K; Masui T
    Environ Sci Technol; 2015 Jun; 49(12):7245-53. PubMed ID: 25982947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.
    Kantola IB; Masters MD; Beerling DJ; Long SP; DeLucia EH
    Biol Lett; 2017 Apr; 13(4):. PubMed ID: 28381630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable bioenergy for climate mitigation: developing drought-tolerant trees and grasses.
    Taylor G; Donnison IS; Murphy-Bokern D; Morgante M; Bogeat-Triboulot MB; Bhalerao R; Hertzberg M; Polle A; Harfouche A; Alasia F; Petoussi V; Trebbi D; Schwarz K; Keurentjes JJB; Centritto M; Genty B; Flexas J; Grill E; Salvi S; Davies WJ
    Ann Bot; 2019 Oct; 124(4):513-520. PubMed ID: 31665761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.
    Devaraju N; Bala G; Nemani R
    Plant Cell Environ; 2015 Sep; 38(9):1931-46. PubMed ID: 25410808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.