These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34903787)

  • 21. Selective Grazing by a Tropical Copepod (
    Leitão E; Ger KA; Panosso R
    Front Microbiol; 2018; 9():301. PubMed ID: 29527199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using phytoplankton and flow cytometry to analyze grazing by marine organisms.
    Cucci TL; Shumway SE; Brown WS; Newell CR
    Cytometry; 1989 Sep; 10(5):659-69. PubMed ID: 2776582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grazing resistance of bacterial biofilms: a matter of predators' feeding trait.
    Seiler C; van Velzen E; Neu TR; Gaedke U; Berendonk TU; Weitere M
    FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28961787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione.
    Hjorth M; Dahllöf I; Forbes VE
    Aquat Toxicol; 2006 Apr; 77(1):105-15. PubMed ID: 16352351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomagnification of Methylmercury in a Marine Plankton Ecosystem.
    Wu P; Zakem EJ; Dutkiewicz S; Zhang Y
    Environ Sci Technol; 2020 May; 54(9):5446-5455. PubMed ID: 32054263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Grazing Pressure Is Independent of Prey Size in a Generalist Herbivorous Protist: Insights from Experimental Temperature Gradients.
    Cabrerizo MJ; Marañón E
    Microb Ecol; 2021 Apr; 81(3):553-562. PubMed ID: 32829442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Filter-feeding fish (Hypophthalmichthys molitrix) mediated phosphorus recycling versus grazing pressure as drivers of the trophic cascade in large enclosures subsidized by allochthonous detritus.
    Lin Q; Zeng D; Guo T; Peng L
    Water Res; 2021 Oct; 204():117579. PubMed ID: 34455159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic.
    Cáceres C; Taboada FG; Höfer J; Anadón R
    PLoS One; 2013; 8(7):e69159. PubMed ID: 23935946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons.
    Jagadeesan L; Jyothibabu R; Arunpandi N; Parthasarathi S
    Environ Monit Assess; 2017 Mar; 189(3):105. PubMed ID: 28205106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between planktonic microalgae and protozoan grazers.
    Tillmann U
    J Eukaryot Microbiol; 2004; 51(2):156-68. PubMed ID: 15134250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment.
    Van de Perre D; Roessink I; Janssen CR; Smolders E; Van Regenmortel T; Van Wichelen J; Vyverman W; Van den Brink PJ; De Schamphelaere KA
    Environ Toxicol Chem; 2016 Nov; 35(11):2698-2712. PubMed ID: 27018170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermittency in processing explains the diversity and shape of functional grazing responses.
    Wirtz KW
    Oecologia; 2012 Aug; 169(4):879-94. PubMed ID: 22311253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards an Understanding of Diel Feeding Rhythms in Marine Protists: Consequences of Light Manipulation.
    Arias A; Saiz E; Calbet A
    Microb Ecol; 2020 Jan; 79(1):64-72. PubMed ID: 31147731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs.
    Cerezo MI; Agusti S
    Mar Pollut Bull; 2015 Dec; 101(2):726-35. PubMed ID: 26555796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size.
    Schulhof MA; Shurin JB; Declerck SAJ; Van de Waal DB
    Glob Chang Biol; 2019 Aug; 25(8):2751-2762. PubMed ID: 31004556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoplankton production and grazing balances in the Costa Rica Dome.
    Landry MR; Selph KE; Décima M; Gutiérrez-Rodríguez A; Stukel MR; Taylor AG; Pasulka AL
    J Plankton Res; 2016 Mar; 38(2):366-379. PubMed ID: 27275036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal variation of phytoplankton growth and grazing loss in the west coast of Peninsular Malaysia.
    Lim JH; Lee CW; Kudo I
    Environ Monit Assess; 2015 May; 187(5):246. PubMed ID: 25864082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments.
    Kagami M; Yoshida T; Gurung T; Urabe J
    Oecologia; 2002 Nov; 133(3):356-363. PubMed ID: 28466215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity.
    Morozov A; Arashkevich E; Nikishina A; Solovyev K
    Math Med Biol; 2011 Jun; 28(2):185-215. PubMed ID: 20562472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.