These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34903827)

  • 1. Protein embeddings and deep learning predict binding residues for various ligand classes.
    Littmann M; Heinzinger M; Dallago C; Weissenow K; Rost B
    Sci Rep; 2021 Dec; 11(1):23916. PubMed ID: 34903827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embeddings from protein language models predict conservation and variant effects.
    Marquet C; Heinzinger M; Olenyi T; Dallago C; Erckert K; Bernhofer M; Nechaev D; Rost B
    Hum Genet; 2022 Oct; 141(10):1629-1647. PubMed ID: 34967936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale annotation of protein binding sites via language model and geometric deep learning.
    Yuan Q; Tian C; Yang Y
    Elife; 2024 Apr; 13():. PubMed ID: 38630609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein embeddings predict binding residues in disordered regions.
    Jahn LR; Marquet C; Heinzinger M; Rost B
    Sci Rep; 2024 Jun; 14(1):13566. PubMed ID: 38866950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review and comparative assessment of sequence-based predictors of protein-binding residues.
    Zhang J; Kurgan L
    Brief Bioinform; 2018 Sep; 19(5):821-837. PubMed ID: 28334258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. M-Ionic: prediction of metal-ion-binding sites from sequence using residue embeddings.
    Shenoy A; Kalakoti Y; Sundar D; Elofsson A
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate structure prediction of biomolecular interactions with AlphaFold 3.
    Abramson J; Adler J; Dunger J; Evans R; Green T; Pritzel A; Ronneberger O; Willmore L; Ballard AJ; Bambrick J; Bodenstein SW; Evans DA; Hung CC; O'Neill M; Reiman D; Tunyasuvunakool K; Wu Z; Žemgulytė A; Arvaniti E; Beattie C; Bertolli O; Bridgland A; Cherepanov A; Congreve M; Cowen-Rivers AI; Cowie A; Figurnov M; Fuchs FB; Gladman H; Jain R; Khan YA; Low CMR; Perlin K; Potapenko A; Savy P; Singh S; Stecula A; Thillaisundaram A; Tong C; Yakneen S; Zhong ED; Zielinski M; Žídek A; Bapst V; Kohli P; Jaderberg M; Hassabis D; Jumper JM
    Nature; 2024 Jun; 630(8016):493-500. PubMed ID: 38718835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone.
    Chen P; Huang JZ; Gao X
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S4. PubMed ID: 25474163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-Protein and Protein-Peptide Docking with ClusPro Server.
    Alekseenko A; Ignatov M; Jones G; Sabitova M; Kozakov D
    Methods Mol Biol; 2020; 2165():157-174. PubMed ID: 32621224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning.
    Quadir F; Roy RS; Halfmann R; Cheng J
    Sci Rep; 2021 Jun; 11(1):12295. PubMed ID: 34112907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learned Embeddings from Deep Learning to Visualize and Predict Protein Sets.
    Dallago C; Schütze K; Heinzinger M; Olenyi T; Littmann M; Lu AX; Yang KK; Min S; Yoon S; Morton JT; Rost B
    Curr Protoc; 2021 May; 1(5):e113. PubMed ID: 33961736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting residue-wise contact orders in proteins by support vector regression.
    Song J; Burrage K
    BMC Bioinformatics; 2006 Oct; 7():425. PubMed ID: 17014735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information.
    Qiao L; Xie D
    Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction.
    Weissenow K; Heinzinger M; Rost B
    Structure; 2022 Aug; 30(8):1169-1177.e4. PubMed ID: 35609601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.