BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 34904380)

  • 1. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations.
    Balachandar S; Graves TJ; Shimonty A; Kerr K; Kilner J; Xiao S; Slade R; Sroya M; Alikian M; Curetean E; Thomas E; McConnell VPM; McKee S; Boardman-Pretty F; Devereau A; Fowler TA; Caulfield MJ; Alton EW; Ferguson T; Redhead J; McKnight AJ; Thomas GA; ; Aldred MA; Shovlin CL
    Am J Med Genet A; 2022 Mar; 188(3):959-964. PubMed ID: 34904380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical and molecular characterization of patients with hereditary hemorrhagic telangiectasia: Experience from an HHT Center of Excellence.
    Latif MA; Sobreira NLD; Guthrie KS; Motaghi M; Robinson GM; Shafaat O; Gong AJ; Weiss CR
    Am J Med Genet A; 2021 Jul; 185(7):1981-1990. PubMed ID: 33768677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hereditary hemorrhagic telangiectasia associated with cortical development malformation due to a start loss mutation in ENG.
    Villa D; Cinnante C; Valcamonica G; Manenti G; Lanfranconi S; Colombi A; Ghione I; Saetti MC; D'Amico M; Bonato S; Bresolin N; Comi GP; Ronchi D
    BMC Neurol; 2020 Aug; 20(1):316. PubMed ID: 32847536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1.
    Albiñana V; Zafra MP; Colau J; Zarrabeitia R; Recio-Poveda L; Olavarrieta L; Pérez-Pérez J; Botella LM
    BMC Med Genet; 2017 Feb; 18(1):20. PubMed ID: 28231770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Activin Receptor-Like Kinase 1 in Endothelial Cells Suppresses Development of Arteriovenous Malformations in Mouse Models of Hereditary Hemorrhagic Telangiectasia.
    Hwan Kim Y; Vu PN; Choe SW; Jeon CJ; Arthur HM; Vary CPH; Lee YJ; Oh SP
    Circ Res; 2020 Oct; 127(9):1122-1137. PubMed ID: 32762495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational and clinical spectrum of Japanese patients with hereditary hemorrhagic telangiectasia.
    Kitayama K; Ishiguro T; Komiyama M; Morisaki T; Morisaki H; Minase G; Hamanaka K; Miyatake S; Matsumoto N; Kato M; Takahashi T; Yorifuji T
    BMC Med Genomics; 2021 Dec; 14(1):288. PubMed ID: 34872578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the ENG, ACVRL1, and SMAD4 genes and clinical manifestations of hereditary haemorrhagic telangiectasia: experience from the Center for Osler's Disease, Uppsala University Hospital.
    Karlsson T; Cherif H
    Ups J Med Sci; 2018 Sep; 123(3):153-157. PubMed ID: 30251589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulmonary arteriovenous malformations may be the only clinical criterion present in genetically confirmed hereditary haemorrhagic telangiectasia.
    Anderson E; Sharma L; Alsafi A; Shovlin CL
    Thorax; 2022 Jun; 77(6):628-630. PubMed ID: 35165143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5.
    Farhan A; Yuan F; Partan E; Weiss CR
    Am J Med Genet A; 2022 Jan; 188(1):199-209. PubMed ID: 34611981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical features and mutations in the ENG, ACVRL1, and SMAD4 genes in Korean patients with hereditary hemorrhagic telangiectasia.
    Lee ST; Kim JA; Jang SY; Kim DK; Do YS; Suh GY; Kim JW; Ki CS
    J Korean Med Sci; 2009 Feb; 24(1):69-76. PubMed ID: 19270816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation analysis in hereditary haemorrhagic telangiectasia in Germany reveals 11 novel ENG and 12 novel ACVRL1/ALK1 mutations.
    Wehner LE; Folz BJ; Argyriou L; Twelkemeyer S; Teske U; Geisthoff UW; Werner JA; Engel W; Nayernia K
    Clin Genet; 2006 Mar; 69(3):239-45. PubMed ID: 16542389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of pulmonary arteriovenous malformations in ACVRL1 versus ENG mutation carriers in hereditary hemorrhagic telangiectasia.
    Mu W; Cordner ZA; Yuqi Wang K; Reed K; Robinson G; Mitchell S; Lin D
    Genet Med; 2018 Jun; 20(6):639-644. PubMed ID: 29048420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening for children from families with Rendu-Osler-Weber disease: from geneticist to clinician.
    Giordano P; Nigro A; Lenato GM; Guanti G; Suppressa P; Lastella P; DE Mattia D; Sabbà C
    J Thromb Haemost; 2006 Jun; 4(6):1237-45. PubMed ID: 16706966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence variations of ACVRL1 play a critical role in hepatic vascular malformations in hereditary hemorrhagic telangiectasia.
    Giraud S; Bardel C; Dupuis-Girod S; Carette MF; Gilbert-Dussardier B; Riviere S; Saurin JC; Eyries M; Patri S; Decullier E; Calender A; Lesca G
    Orphanet J Rare Dis; 2020 Sep; 15(1):254. PubMed ID: 32962750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic Mutations in Vascular Malformations of Hereditary Hemorrhagic Telangiectasia Result in Bi-allelic Loss of ENG or ACVRL1.
    Snellings DA; Gallione CJ; Clark DS; Vozoris NT; Faughnan ME; Marchuk DA
    Am J Hum Genet; 2019 Nov; 105(5):894-906. PubMed ID: 31630786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)?
    Wooderchak-Donahue WL; Akay G; Whitehead K; Briggs E; Stevenson DA; O'Fallon B; Velinder M; Farrell A; Shen W; Bedoukian E; Skrabann CM; Antaya RJ; Henderson K; Pollak J; Treat J; Day R; Jacher JE; Hannibal M; Bontempo K; Marth G; Bayrak-Toydemir P; McDonald J
    Genet Med; 2019 Sep; 21(9):2007-2014. PubMed ID: 30760892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ACVRL1 c.314-35A>G polymorphism is associated with organ vascular malformations in hereditary hemorrhagic telangiectasia patients with ENG mutations, but not in patients with ACVRL1 mutations.
    Pawlikowska L; Nelson J; Guo DE; McCulloch CE; Lawton MT; Young WL; Kim H; Faughnan ME;
    Am J Med Genet A; 2015 Jun; 167(6):1262-7. PubMed ID: 25847705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homozygous GDF2 nonsense mutations result in a loss of circulating BMP9 and BMP10 and are associated with either PAH or an "HHT-like" syndrome in children.
    Hodgson J; Ruiz-Llorente L; McDonald J; Quarrell O; Ugonna K; Bentham J; Mason R; Martin J; Moore D; Bergstrom K; Bayrak-Toydemir P; Wooderchak-Donahue W; Morrell NW; Condliffe R; Bernabeu C; Upton PD
    Mol Genet Genomic Med; 2021 Dec; 9(12):e1685. PubMed ID: 33834622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variant analysis in Chinese families with hereditary hemorrhagic telangiectasia.
    Zhao Y; Zhang Y; Wang X; Zhang L
    Mol Genet Genomic Med; 2019 Sep; 7(9):e893. PubMed ID: 31400083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive CT screening for pulmonary arteriovenous malformations in children with confirmed hereditary hemorrhagic telangiectasia: Results from two pediatric centers.
    Soysal N; Eyries M; Verlhac S; Escabasse V; Remus N; Tamalet A; Rioux JY; Franchi-Abella S; Vasile M; Robert S; Delestrain C; Hau I; Ducou-Le Pointe H; Soubrier F; Carette MF; Epaud R
    Pediatr Pulmonol; 2017 May; 52(5):642-649. PubMed ID: 28165669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.