These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34904533)

  • 21. The effects of dynamic workload and experience on commercially available EEG cognitive state metrics in a high-fidelity air traffic control environment.
    Bernhardt KA; Poltavski D; Petros T; Ferraro FR; Jorgenson T; Carlson C; Drechsel P; Iseminger C
    Appl Ergon; 2019 May; 77():83-91. PubMed ID: 30832781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and predicting mental workload in en route air traffic control: critical review and broader implications.
    Loft S; Sanderson P; Neal A; Mooij M
    Hum Factors; 2007 Jun; 49(3):376-99. PubMed ID: 17552304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frontal theta EEG dynamics in a real-world air traffic control task.
    Shou G; Ding L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5594-7. PubMed ID: 24111005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Cyber-Physical-Human System for One-to-Many UAS Operations: Cognitive Load Analysis.
    Planke LJ; Lim Y; Gardi A; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mental workload in air traffic control: an index constructed from field tests.
    Averty P; Collet C; Dittmar A; Athènes S; Vernet-Maury E
    Aviat Space Environ Med; 2004 Apr; 75(4):333-41. PubMed ID: 15086123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Psychophysiological responses to changes in workload during simulated air traffic control.
    Brookings JB; Wilson GF; Swain CR
    Biol Psychol; 1996 Feb; 42(3):361-77. PubMed ID: 8652753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATC-lab: an air traffic control simulator for the laboratory.
    Loft S; Hill A; Neal A; Humphreys M; Yeo G
    Behav Res Methods Instrum Comput; 2004 May; 36(2):331-8. PubMed ID: 15354699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reliability of Mental Workload Index Assessed by EEG with Different Electrode Configurations and Signal Pre-Processing Pipelines.
    Mastropietro A; Pirovano I; Marciano A; Porcelli S; Rizzo G
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring Mental Workload with EEG+fNIRS.
    Aghajani H; Garbey M; Omurtag A
    Front Hum Neurosci; 2017; 11():359. PubMed ID: 28769775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of cues in a binary categorization task on dual-task performance, mental workload, and effort.
    Botzer A; Meyer J; Parmet Y
    J Exp Psychol Appl; 2016 Sep; 22(3):350-65. PubMed ID: 27505049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. State of science: mental workload in ergonomics.
    Young MS; Brookhuis KA; Wickens CD; Hancock PA
    Ergonomics; 2015; 58(1):1-17. PubMed ID: 25442818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks.
    Arico P; Borghini G; Di Flumeri G; Colosimo A; Graziani I; Imbert JP; Granger G; Benhacene R; Terenzi M; Pozzi S; Babiloni F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7242-5. PubMed ID: 26737963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals.
    Wriessnegger SC; Raggam P; Kostoglou K; Müller-Putz GR
    Front Hum Neurosci; 2021; 15():746081. PubMed ID: 34899215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cognitive Analyses for Interface Design Using Dual N-Back Tasks for Mental Workload (MWL) Evaluation.
    Arana-De Las Casas NI; De la Riva-Rodríguez J; Maldonado-Macías AA; Sáenz-Zamarrón D
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From trees to forest: relational complexity network and workload of air traffic controllers.
    Zhang J; Yang J; Wu C
    Ergonomics; 2015; 58(8):1320-36. PubMed ID: 25677762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of mental workload using saccadic eye movements in a free-viewing task.
    Tokuda S; Obinata G; Palmer E; Chaparro A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4523-9. PubMed ID: 22255344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Difficulty to Break a Relational Complexity Network Can Predict Air Traffic Controllers' Mental Workload and Performance in Conflict Resolution.
    Zhang J; E X; Du F; Yang J; Loft S
    Hum Factors; 2021 Mar; 63(2):240-253. PubMed ID: 31618105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driver's mental workload prediction model based on physiological indices.
    Yan S; Tran CC; Wei Y; Habiyaremye JL
    Int J Occup Saf Ergon; 2019 Sep; 25(3):476-484. PubMed ID: 28820660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector-machine-based clustering and classification techniques.
    Yin Z; Zhang J
    Comput Methods Programs Biomed; 2014 Jul; 115(3):119-34. PubMed ID: 24821400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Increasing Task Complexity and Use of Informational Assistance Systems on Mental Workload.
    Bläsing D; Bornewasser M
    Brain Sci; 2021 Jan; 11(1):. PubMed ID: 33466605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.