BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34904620)

  • 1. Bipolarons rule the short-range terahertz conductivity in electrochemically doped P3HT.
    Tsokkou D; Cavassin P; Rebetez G; Banerji N
    Mater Horiz; 2022 Jan; 9(1):482-491. PubMed ID: 34904620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic Tools to Investigate the Electrochemical Doping Kinetics and Efficiency in Organic Semiconductors.
    Bardagot O; Banerji N
    Chimia (Aarau); 2022 Jun; 76(6):546-551. PubMed ID: 38069724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the evolution of the Raman spectra of molecularly p-doped poly(3-hexylthiophene-2,5-diyl): signatures of polarons and bipolarons.
    Mansour AE; Valencia AM; Lungwitz D; Wegner B; Tanaka N; Shoji Y; Fukushima T; Opitz A; Cocchi C; Koch N
    Phys Chem Chem Phys; 2022 Feb; 24(5):3109-3118. PubMed ID: 35040854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Doping in Ordered and Disordered Domains of Organic Mixed Ionic-Electronic Conductors.
    Cavassin P; Holzer I; Tsokkou D; Bardagot O; Réhault J; Banerji N
    Adv Mater; 2023 Sep; 35(35):e2300308. PubMed ID: 37086157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.
    Patel SN; Javier AE; Balsara NP
    ACS Nano; 2013 Jul; 7(7):6056-68. PubMed ID: 23789816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Doping Effect on the Conductivity of Melanin-Inspired Materials.
    Brizuela Guerra N; Morais Lima JV; Nozella NL; Boratto MH; Paulin JV; Graeff CFO
    ACS Appl Bio Mater; 2024 Apr; 7(4):2186-2196. PubMed ID: 38466818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons.
    Enengl C; Enengl S; Pluczyk S; Havlicek M; Lapkowski M; Neugebauer H; Ehrenfreund E
    Chemphyschem; 2016 Dec; 17(23):3836-3844. PubMed ID: 27685867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breath figure-derived porous semiconducting films for organic electronics.
    Zhang X; Wang B; Huang L; Huang W; Wang Z; Zhu W; Chen Y; Mao Y; Facchetti A; Marks TJ
    Sci Adv; 2020 Mar; 6(13):eaaz1042. PubMed ID: 32232157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast transient absorption spectroscopy of doped P3HT films: distinguishing free and trapped polarons.
    Voss MG; Scholes DT; Challa JR; Schwartz BJ
    Faraday Discuss; 2019 Jul; 216(0):339-362. PubMed ID: 31038132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Stability of Permanent Electrochemical Doping of Quantum Dot, Fullerene, and Conductive Polymer Films in Frozen Electrolytes for Use in Semiconductor Devices.
    Gudjonsdottir S; van der Stam W; Koopman C; Kwakkenbos B; Evers WH; Houtepen AJ
    ACS Appl Nano Mater; 2019 Aug; 2(8):4900-4909. PubMed ID: 31475245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-spin interactions and spin delocalisation in a doped organic semiconductor probed by EPR spectroscopy.
    Tait CE; Reckwitz A; Arvind M; Neher D; Bittl R; Behrends J
    Phys Chem Chem Phys; 2021 Jun; 23(25):13827-13841. PubMed ID: 34151324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic and vibrational spectra of positive polarons and bipolarons in regioregular poly(3-hexylthiophene) doped with ferric chloride.
    Yamamoto J; Furukawa Y
    J Phys Chem B; 2015 Apr; 119(13):4788-94. PubMed ID: 25768109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.
    Lu Y; Wang JY; Pei J
    Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction: Bipolarons rule the short-range terahertz conductivity in electrochemically doped P3HT.
    Tsokkou D; Cavassin P; Rebetez G; Banerji N
    Mater Horiz; 2022 Feb; 9(2):841. PubMed ID: 35005761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and Morphological Control of Interfacial Self-Doping for Efficient Organic Electronics.
    Liu Y; Cole MD; Jiang Y; Kim PY; Nordlund D; Emrick T; Russell TP
    Adv Mater; 2018 Apr; 30(15):e1705976. PubMed ID: 29504157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Methodology of Fabricating Novel Electrodes for Semiconductor Devices: Doping and Van der Waals Integrating Organic Semiconductor Films.
    Chen PA; Guo J; Yan X; Liu Y; Wei H; Qiu X; Xia J; Guo J; Ding J; Gong Z; Chen C; Lei T; Chen H; Zeng Z; Hu Y
    Small; 2023 Jul; 19(27):e2207858. PubMed ID: 36949014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density.
    Panzer MJ; Frisbie CD
    J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conducting polymer transistors making use of activated carbon gate electrodes.
    Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and air-stable n-type doping in organic semiconductors.
    Yuan D; Liu W; Zhu X
    Chem Soc Rev; 2023 Jun; 52(11):3842-3872. PubMed ID: 37183967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation Doping for Threshold Voltage Control in Organic Field-Effect Transistors.
    Lashkov I; Krechan K; Ortstein K; Talnack F; Wang SJ; Mannsfeld SCB; Kleemann H; Leo K
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8664-8671. PubMed ID: 33569958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.