These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 34904650)

  • 1. Flight activity and age cause wing damage in house flies.
    Wehmann HN; Engels T; Lehmann FO
    J Exp Biol; 2022 Jan; 225(1):. PubMed ID: 34904650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
    Hsu SJ; Deng H; Wang J; Dong H; Cheng B
    J R Soc Interface; 2024 Jul; 21(216):20240076. PubMed ID: 39016178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight efficiency is a key to diverse wing morphologies in small insects.
    Engels T; Kolomenskiy D; Lehmann FO
    J R Soc Interface; 2021 Oct; 18(183):20210518. PubMed ID: 34665973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi-empirical model of the aerodynamics of manoeuvring insect flight.
    Walker SM; Taylor GK
    J R Soc Interface; 2021 Apr; 18(177):20210103. PubMed ID: 33906387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning reveals the control mechanics of an insect wing hinge.
    Melis JM; Siwanowicz I; Dickinson MH
    Nature; 2024 Apr; 628(8009):795-803. PubMed ID: 38632396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chemo-mechanical constitutive model for muscle activation in bat wing skins.
    Skulborstad A; Goulbourne NC
    J R Soc Interface; 2024 Jul; 21(216):20230593. PubMed ID: 38981517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control and precision of flight muscle activation in Drosophila.
    Lehmann FO; Bartussek J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jan; 203(1):1-14. PubMed ID: 27942807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive shifts underlie the divergence in wing morphology in bombycoid moths.
    Aiello BR; Tan M; Bin Sikandar U; Alvey AJ; Bhinderwala B; Kimball KC; Barber JR; Hamilton CA; Kawahara AY; Sponberg S
    Proc Biol Sci; 2021 Aug; 288(1956):20210677. PubMed ID: 34344177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemolymph viscosity in hawkmoths and its implications for hovering flight.
    Brasovs A; Palaoro AV; Aprelev P; Beard CE; Adler PH; Kornev KG
    Proc Biol Sci; 2023 Apr; 290(1997):20222185. PubMed ID: 37122259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal wing- and fin-beat frequency scaling.
    Jensen JH; Dyre JC; Hecksher T
    PLoS One; 2024; 19(6):e0303834. PubMed ID: 38837960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling roll perturbations in fruit flies.
    Beatus T; Guckenheimer JM; Cohen I
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25762650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facultative adjustment of pre-fledging mass loss by nestling swifts preparing for flight.
    Wright J; Markman S; Denney SM
    Proc Biol Sci; 2006 Aug; 273(1596):1895-900. PubMed ID: 16822749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning reveals the control mechanics of an insect wing hinge.
    Melis JM; Siwanowicz I; Dickinson MH
    bioRxiv; 2024 Feb; ():. PubMed ID: 37425804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics of insect flight stability and perturbation response.
    Hedrick TL; Blandford E; Taha HE
    Integr Comp Biol; 2024 Jun; ():. PubMed ID: 38897796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating controlled gust perturbations using vortex rings.
    Gupta D; Sane SP; Arakeri JH
    PLoS One; 2024; 19(7):e0305084. PubMed ID: 38976706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Mathematical Model to Capture Complex Microstructure Orientation on Insect Wings.
    Polet DT; Flynn MR; Sperling FA
    PLoS One; 2015; 10(10):e0138282. PubMed ID: 26444908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electronic McPhail trap.
    Potamitis I; Rigakis I; Fysarakis K
    Sensors (Basel); 2014 Nov; 14(12):22285-99. PubMed ID: 25429412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flight Dispersal in Supratidal Rockpool Beetles.
    Plaza-Buendía J; Mirón-Gatón JM; García-Meseguer AJ; Villastrigo A; Millán A; Velasco J
    Insects; 2024 Feb; 15(3):. PubMed ID: 38535336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bigger is not necessarily better: empirical tests show that dispersal proxies misrepresent actual dispersal ability.
    Lancaster J; Downes BJ; Kayll ZJ
    Proc Biol Sci; 2024 May; 291(2023):20240172. PubMed ID: 38772418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A test of balanced fitness limitations theory: Pollen limitation in plants.
    Rosenheim JA; Williams NM; Rapp JM; Schreiber SJ
    Ecol Evol; 2024 Feb; 14(2):e10911. PubMed ID: 38304270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.