These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34904652)

  • 1. Revealing sound-induced motion patterns in fish hearing structures in 4D: a standing wave tube-like setup designed for high-resolution time-resolved tomography.
    Maiditsch IP; Ladich F; Heß M; Schlepütz CM; Schulz-Mirbach T
    J Exp Biol; 2022 Jan; 225(1):. PubMed ID: 34904652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory chain reaction: Effects of sound pressure and particle motion on auditory structures in fishes.
    Schulz-Mirbach T; Ladich F; Mittone A; Olbinado M; Bravin A; Maiditsch IP; Melzer RR; Krysl P; Heß M
    PLoS One; 2020; 15(3):e0230578. PubMed ID: 32218605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths.
    Schulz-Mirbach T; Ladich F; Plath M; Heß M
    Biol Rev Camb Philos Soc; 2019 Apr; 94(2):457-482. PubMed ID: 30239135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of the impacts of acoustic stimulus on fish otoliths from two directions.
    Wei C; McCauley RD
    J Acoust Soc Am; 2022 Dec; 152(6):3226. PubMed ID: 36586842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic change in predicted acoustic pressure sensitivity in larval red drum (
    Salas AK; Wilson PS; Fuiman LA
    J Exp Biol; 2019 Aug; 222(Pt 16):. PubMed ID: 31371400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound generation in zebrafish with Bio-Opto-Acoustics.
    Favre-Bulle IA; Taylor MA; Marquez-Legorreta E; Vanwalleghem G; Poulsen RE; Rubinsztein-Dunlop H; Scott EK
    Nat Commun; 2020 Nov; 11(1):6120. PubMed ID: 33257652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle motion and sound pressure in fish tanks: A behavioural exploration of acoustic sensitivity in the zebrafish.
    Campbell J; Shafiei Sabet S; Slabbekoorn H
    Behav Processes; 2019 Jul; 164():38-47. PubMed ID: 30953790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fish bioacoustics.
    Ladich F
    Curr Opin Neurobiol; 2014 Oct; 28():121-7. PubMed ID: 25062472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging.
    Schulz-Mirbach T; Olbinado M; Rack A; Mittone A; Bravin A; Melzer RR; Ladich F; Heß M
    Sci Rep; 2018 Feb; 8(1):3121. PubMed ID: 29449570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sound World of Zebrafish: A Critical Review of Hearing Assessment.
    Popper AN; Sisneros JA
    Zebrafish; 2022 Apr; 19(2):37-48. PubMed ID: 35439045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study.
    Schulz-Mirbach T; Heß M; Metscher BD; Ladich F
    BMC Biol; 2013 Jul; 11():75. PubMed ID: 23826967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-induced hearing loss in zebrafish: investigating structural and functional inner ear damage and recovery.
    Breitzler L; Lau IH; Fonseca PJ; Vasconcelos RO
    Hear Res; 2020 Jun; 391():107952. PubMed ID: 32361602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-CT and SEM investigation of sound absorption structure and chambers in the otoliths of Giant Panda fish species - Chinese Bahaba (Bahaba taipingensis).
    Gu YG; Huang HH; Liang Y; Fang Y; Dai M; Ou YJ; Wang LG; Wang XN
    Micron; 2022 Oct; 161():103342. PubMed ID: 35963207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustics of a standing wave tank for studying the hearing capacity of fish.
    van den Berg AV; Schuijf A
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):12-6. PubMed ID: 4019904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish.
    Riley BB; Zhu C; Janetopoulos C; Aufderheide KJ
    Dev Biol; 1997 Nov; 191(2):191-201. PubMed ID: 9398434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative size variation of the otoliths, swim bladder, and Weberian apparatus structures in piranhas and pacus (Characiformes: Serrasalmidae) with different ecologies and its implications for the detection of sound stimuli.
    Boyle KS; Herrel A
    J Morphol; 2018 Dec; 279(12):1849-1871. PubMed ID: 30443931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyketide Synthase Plays a Conserved Role in Otolith Formation.
    Lee MS; Philippe J; Katsanis N; Zhou W
    Zebrafish; 2019 Aug; 16(4):363-369. PubMed ID: 31188077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersal without errors: symmetrical ears tune into the right frequency for survival.
    Gagliano M; Depczynski M; Simpson SD; Moore JA
    Proc Biol Sci; 2008 Mar; 275(1634):527-34. PubMed ID: 18077258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle.
    Stooke-Vaughan GA; Huang P; Hammond KL; Schier AF; Whitfield TT
    Development; 2012 May; 139(10):1777-87. PubMed ID: 22461562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between swim bladder morphology and hearing abilities--a case study on Asian and African cichlids.
    Schulz-Mirbach T; Metscher B; Ladich F
    PLoS One; 2012; 7(8):e42292. PubMed ID: 22879934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.