These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34904882)
1. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882 [TBL] [Abstract][Full Text] [Related]
2. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Lv J; Wang J; Shang X; Liu F; Guo S Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470 [TBL] [Abstract][Full Text] [Related]
3. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma. Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based model for predicting progression in patients with head and neck squamous cell carcinoma. Zhao Z; Li Y; Wu Y; Chen R Cancer Biomark; 2020; 27(1):19-28. PubMed ID: 31658045 [TBL] [Abstract][Full Text] [Related]
5. Prediction of survival and recurrence in patients with pancreatic cancer by integrating multi-omics data. Baek B; Lee H Sci Rep; 2020 Nov; 10(1):18951. PubMed ID: 33144687 [TBL] [Abstract][Full Text] [Related]
6. A model for predicting prognosis in patients with esophageal squamous cell carcinoma based on joint representation learning. Yu J; Wu X; Lv M; Zhang Y; Zhang X; Li J; Zhu M; Huang J; Zhang Q Oncol Lett; 2020 Dec; 20(6):387. PubMed ID: 33193847 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Chaudhary K; Poirion OB; Lu L; Garmire LX Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688 [TBL] [Abstract][Full Text] [Related]
8. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data. Salimy S; Lanjanian H; Abbasi K; Salimi M; Najafi A; Tapak L; Masoudi-Nejad A Heliyon; 2023 Jul; 9(7):e17653. PubMed ID: 37455955 [TBL] [Abstract][Full Text] [Related]
9. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. Lemsara A; Ouadfel S; Fröhlich H BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344 [TBL] [Abstract][Full Text] [Related]
10. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping. Zhu S; Wang W; Fang W; Cui M Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589 [TBL] [Abstract][Full Text] [Related]
11. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder. Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028 [TBL] [Abstract][Full Text] [Related]
12. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms. Rintala TJ; Fortino V PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448 [TBL] [Abstract][Full Text] [Related]
13. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
14. MTUS1 and its targeting miRNAs in colorectal carcinoma: significant associations. Ozcan O; Kara M; Yumrutas O; Bozgeyik E; Bozgeyik I; Celik OI Tumour Biol; 2016 May; 37(5):6637-45. PubMed ID: 26643896 [TBL] [Abstract][Full Text] [Related]
15. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). Ma T; Zhang A BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727 [TBL] [Abstract][Full Text] [Related]
16. Novel Multiple miRNA-Based Signatures for Predicting Overall Survival and Recurrence-Free Survival of Colorectal Cancer Patients. Qian J; Zeng L; Jiang X; Zhang Z; Luo X Med Sci Monit; 2019 Sep; 25():7258-7271. PubMed ID: 31560680 [TBL] [Abstract][Full Text] [Related]
17. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Huang G; Wang C; Fu X Future Oncol; 2021 Nov; 17(33):4481-4495. PubMed ID: 34374301 [TBL] [Abstract][Full Text] [Related]
18. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856 [TBL] [Abstract][Full Text] [Related]
19. Prognostic value of a hypoxia-related microRNA signature in patients with colorectal cancer. Yang Y; Qu A; Wu Q; Zhang X; Wang L; Li C; Dong Z; Du L; Wang C Aging (Albany NY); 2020 Jan; 12(1):35-52. PubMed ID: 31926112 [TBL] [Abstract][Full Text] [Related]
20. Deep Sequencing the MicroRNA Transcriptome in Colorectal Cancer. Schee K; Lorenz S; Worren MM; Günther CC; Holden M; Hovig E; Fodstad O; Meza-Zepeda LA; Flatmark K PLoS One; 2013; 8(6):e66165. PubMed ID: 23824282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]