These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34904993)

  • 1. On the icephobicity of damage-tolerant superhydrophobic bulk nanocomposites.
    Vazirinasab E; Maghsoudi K; Momen G; Jafari R
    Soft Matter; 2022 Jan; 18(2):412-424. PubMed ID: 34904993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Icephobic Coating through a Self-Formed Superhydrophobic Surface Using a Polymer and Microsized Particles.
    Moon CH; Yasmeen S; Park K; Gaiji H; Chung C; Kim H; Moon HS; Choi JW; Lee HB
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3334-3343. PubMed ID: 34981919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance.
    Chen C; Tian Z; Luo X; Jiang G; Hu X; Wang L; Peng R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35535994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process.
    Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W
    J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism.
    Jamil MI; Zhan X; Chen F; Cheng D; Zhang Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31532-31542. PubMed ID: 31368296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.
    Zhang Y; Ge D; Yang S
    J Colloid Interface Sci; 2014 Jun; 423():101-7. PubMed ID: 24703674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover.
    Chen C; Fan P; Zhu D; Tian Z; Zhao H; Wang L; Peng R; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6025-6034. PubMed ID: 36688663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ growth of superhydrophobic and icephobic films with micro/nanoscale hierarchical structures on the aluminum substrate.
    Li W; Zhang X; Yang J; Miao F
    J Colloid Interface Sci; 2013 Nov; 410():165-71. PubMed ID: 24011444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.
    Davis A; Surdo S; Caputo G; Bayer IS; Athanassiou A
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2907-2917. PubMed ID: 29286629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Silica-Silicone Nanocomposite with Regenerative Superhydrophobic Capabilities.
    Elzaabalawy A; Verberne P; Meguid SA
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42827-42837. PubMed ID: 31623429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly robust, concrete-inspired superhydrophobic nanocomposite coating.
    Binrui W; Qiong Q; Xuan J; Dong X; Li K; Liping S; Xin C; Qizhi Z; Feiyan F; Xian Y
    Nanoscale; 2023 Dec; 15(47):19304-19313. PubMed ID: 37997388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Activation of Superhydrophobic Surfaces with Triple Icephobicity at Low Temperatures.
    Sun Y; Wang Y; Liang W; He L; Wang F; Zhu D; Zhao H
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49352-49361. PubMed ID: 36260496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.
    Su F; Yao K
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8762-70. PubMed ID: 24796223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfaces with Sustainable Superhydrophobicity upon Mechanical Abrasion.
    Bai X; Xue CH; Jia ST
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28171-28179. PubMed ID: 27668829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Icephobicity of Silicone Oil-Infused Oleamide-Polydimethylsiloxane with Enhanced Lubrication Lifetime.
    Lee SJ; Park GD
    ACS Omega; 2022 Jun; 7(24):21156-21162. PubMed ID: 35755368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the development of superhydrophobic and icephobic surfaces.
    Elzaabalawy A; Meguid SA
    Int J Mech Mater Des; 2022; 18(3):509-547. PubMed ID: 37520670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Icephobic surfaces: Definition and figures of merit.
    Irajizad P; Nazifi S; Ghasemi H
    Adv Colloid Interface Sci; 2019 Jul; 269():203-218. PubMed ID: 31096074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.