These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34905215)

  • 1. Hydraulic Conductivity from Nuclear Magnetic Resonance Logs in Sediments with Elevated Magnetic Susceptibilities.
    Crow H; Paradis D; Grunewald E; Liang XX; Russell HAJ
    Ground Water; 2022 May; 60(3):377-392. PubMed ID: 34905215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bootstrap calibration and uncertainty estimation of downhole NMR hydraulic conductivity estimates in an unconsolidated aquifer.
    Parsekian AD; Dlubac K; Grunewald E; Butler JJ; Knight R; Walsh DO
    Ground Water; 2015; 53(1):111-21. PubMed ID: 24520904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.
    Ren S; Parsekian AD; Zhang Y; Carr BJ
    Ground Water; 2019 Mar; 57(2):303-319. PubMed ID: 29766497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.
    Knight R; Walsh DO; Butler JJ; Grunewald E; Liu G; Parsekian AD; Reboulet EC; Knobbe S; Barrows M
    Ground Water; 2016 Jan; 54(1):104-14. PubMed ID: 25810149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of NMR Logging for Estimating Hydraulic Conductivity in Glacial Aquifers.
    Kendrick AK; Knight R; Johnson CD; Liu G; Knobbe S; Hunt RJ; Butler JJ
    Ground Water; 2021 Jan; 59(1):31-48. PubMed ID: 32390161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Models for Estimating Hydraulic Conductivity in Glacial Aquifers with NMR Logging.
    Kendrick AK; Knight R; Johnson CD; Liu G; Hart DJ; Butler JJ; Hunt RJ
    Ground Water; 2023; 61(6):778-792. PubMed ID: 37057729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer.
    Morin RH; LeBlanc DR; Troutman BM
    Ground Water; 2010; 48(2):181-90. PubMed ID: 19878327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small-diameter NMR logging tool for groundwater investigations.
    Walsh D; Turner P; Grunewald E; Zhang H; Butler JJ; Reboulet E; Knobbe S; Christy T; Lane JW; Johnson CD; Munday T; Fitzpatrick A
    Ground Water; 2013; 51(6):914-26. PubMed ID: 23425428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Characteristic Grain Sizes and Effective Porosity from Hydraulic Conductivity Data.
    Peche A; Houben GJ
    Ground Water; 2023; 61(4):574-585. PubMed ID: 36262022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of vertical variations in hydraulic conductivity in unconsolidated sediments.
    Dietze M; Dietrich P
    Ground Water; 2012; 50(3):450-6. PubMed ID: 21883188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing streambed hydraulic conductivity and their implications on stream-aquifer interaction: a conceptual review.
    Naganna SR; Deka PC; Ch S; Hansen WF
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24765-24789. PubMed ID: 28988330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Borehole Nuclear Magnetic Resonance Estimation of Specific Yield in a Fractured Granite Aquifer.
    Phillips SN; Carr B; Zhang Y; Flinchum B; Ren S
    Ground Water; 2024; 62(4):578-590. PubMed ID: 37930240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic tests with direct-push equipment.
    Butler JJ; Healey JM; McCall GW; Garnett EJ; Loheide SP
    Ground Water; 2002; 40(1):25-36. PubMed ID: 11798043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of hydraulic conductivity from grain-size distribution for different depositional environments.
    Rosas J; Lopez O; Missimer TM; Coulibaly KM; Dehwah AH; Sesler K; Lujan LR; Mantilla D
    Ground Water; 2014; 52(3):399-413. PubMed ID: 23742731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability profiles in granular aquifers using flowmeters in direct-push wells.
    Paradis D; Lefebvre R; Morin RH; Gloaguen E
    Ground Water; 2011; 49(4):534-47. PubMed ID: 20880040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of invertebrate bioturbation on vertical hydraulic conductivity of streambed for a river].
    Ren CL; Song JX; Yang XG; Xue J
    Huan Jing Ke Xue; 2013 Nov; 34(11):4275-81. PubMed ID: 24455934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system.
    Cho MS; Zhao Z; Thomson NR; Illman WA
    J Contam Hydrol; 2020 Feb; 229():103559. PubMed ID: 31784037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.
    Illman WA
    Ground Water; 2014; 52(5):659-84. PubMed ID: 24749939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.