These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. Chen C; Grennan K; Badner J; Zhang D; Gershon E; Jin L; Liu C PLoS One; 2011 Feb; 6(2):e17238. PubMed ID: 21386892 [TBL] [Abstract][Full Text] [Related]
4. Adjusting batch effects in microarray expression data using empirical Bayes methods. Johnson WE; Li C; Rabinovic A Biostatistics; 2007 Jan; 8(1):118-27. PubMed ID: 16632515 [TBL] [Abstract][Full Text] [Related]
5. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data. Müller C; Schillert A; Röthemeier C; Trégouët DA; Proust C; Binder H; Pfeiffer N; Beutel M; Lackner KJ; Schnabel RB; Tiret L; Wild PS; Blankenberg S; Zeller T; Ziegler A PLoS One; 2016; 11(6):e0156594. PubMed ID: 27272489 [TBL] [Abstract][Full Text] [Related]
6. Blind estimation and correction of microarray batch effect. Varma S PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844 [TBL] [Abstract][Full Text] [Related]
8. Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients. Walker WL; Liao IH; Gilbert DL; Wong B; Pollard KS; McCulloch CE; Lit L; Sharp FR BMC Genomics; 2008 Oct; 9():494. PubMed ID: 18937867 [TBL] [Abstract][Full Text] [Related]
9. Alternative empirical Bayes models for adjusting for batch effects in genomic studies. Zhang Y; Jenkins DF; Manimaran S; Johnson WE BMC Bioinformatics; 2018 Jul; 19(1):262. PubMed ID: 30001694 [TBL] [Abstract][Full Text] [Related]
10. Assessing differential expression in two-color microarrays: a resampling-based empirical Bayes approach. Li D; Le Pape MA; Parikh NI; Chen WX; Dye TD PLoS One; 2013; 8(11):e80099. PubMed ID: 24312198 [TBL] [Abstract][Full Text] [Related]
11. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles. Kitchen RR; Sabine VS; Sims AH; Macaskill EJ; Renshaw L; Thomas JS; van Hemert JI; Dixon JM; Bartlett JM BMC Genomics; 2010 Feb; 11():134. PubMed ID: 20181233 [TBL] [Abstract][Full Text] [Related]
12. Covariance adjustment for batch effect in gene expression data. Lee JA; Dobbin KK; Ahn J Stat Med; 2014 Jul; 33(15):2681-95. PubMed ID: 24687561 [TBL] [Abstract][Full Text] [Related]
13. GENESHIFT: a nonparametric approach for integrating microarray gene expression data based on the inner product as a distance measure between the distributions of genes. Lazar C; Taminau J; Meganck S; Steenhoff D; Coletta A; Solís DY; Molter C; Duque R; Bersini H; Nowé A IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):383-92. PubMed ID: 23929862 [TBL] [Abstract][Full Text] [Related]
14. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. Behdenna A; Colange M; Haziza J; Gema A; Appé G; Azencott CA; Nordor A BMC Bioinformatics; 2023 Dec; 24(1):459. PubMed ID: 38057718 [TBL] [Abstract][Full Text] [Related]
15. Borrowing information across genes and experiments for improved error variance estimation in microarray data analysis. Ji T; Liu P; Nettleton D Stat Appl Genet Mol Biol; 2012; 11(3):Article 12. PubMed ID: 22611597 [TBL] [Abstract][Full Text] [Related]
16. Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies. Zindler T; Frieling H; Neyazi A; Bleich S; Friedel E BMC Bioinformatics; 2020 Jun; 21(1):271. PubMed ID: 32605541 [TBL] [Abstract][Full Text] [Related]
18. Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. Kupfer P; Guthke R; Pohlers D; Huber R; Koczan D; Kinne RW BMC Med Genomics; 2012 Jun; 5():23. PubMed ID: 22682473 [TBL] [Abstract][Full Text] [Related]
19. β-empirical Bayes inference and model diagnosis of microarray data. Mollah MM; Mollah MN; Kishino H BMC Bioinformatics; 2012 Jun; 13():135. PubMed ID: 22713095 [TBL] [Abstract][Full Text] [Related]
20. Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data. Espín-Pérez A; Portier C; Chadeau-Hyam M; van Veldhoven K; Kleinjans JCS; de Kok TMCM PLoS One; 2018; 13(8):e0202947. PubMed ID: 30161168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]