These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34905351)

  • 1. Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization.
    Nilawar S; Chatterjee K
    Biomacromolecules; 2022 Jan; 23(1):226-239. PubMed ID: 34905351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation.
    Chen J; Huang Y; Tang H; Qiao X; Sima X; Guo W
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38756029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds.
    Zhang M; Zhai X; Ma T; Huang Y; Jin M; Yang H; Fu H; Zhang S; Sun T; Jin X; Du Y; Yan CH
    ACS Nano; 2023 Mar; 17(5):4433-4444. PubMed ID: 36802532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.
    Velioglu ZB; Pulat D; Demirbakan B; Ozcan B; Bayrak E; Erisken C
    Connect Tissue Res; 2019 May; 60(3):274-282. PubMed ID: 30058375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering.
    Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M
    Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration.
    Angili SN; Morovvati MR; Kardan-Halvaei M; Saber-Samandari S; Razmjooee K; Abed AM; Toghraie D; Khandan A
    Int J Biol Macromol; 2023 Jan; 224():1152-1165. PubMed ID: 36346262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneously constructing nanotopographical and chemical cues in 3D-printed polylactic acid scaffolds to promote bone regeneration.
    Wang P; Yin HM; Li X; Liu W; Chu YX; Wang Y; Wang Y; Xu JZ; Li ZM; Li JH
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111457. PubMed ID: 33255042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds.
    Bahraminasab M; Talebi A; Doostmohammadi N; Arab S; Ghanbari A; Zarbakhsh S
    J Orthop Surg Res; 2022 Jun; 17(1):320. PubMed ID: 35725606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia.
    Han SH; Cha M; Jin YZ; Lee KM; Lee JH
    Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: Activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress.
    Singh RK; Yoon DS; Mandakhbayar N; Li C; Kurian AG; Lee NH; Lee JH; Kim HW
    Biomaterials; 2022 Sep; 288():121732. PubMed ID: 36031457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.