These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34905643)

  • 1. Non-Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solid-Electrolyte-Interphase, Current Collectors, Binders, and Separators.
    Ni Q; Kim B; Wu C; Kang K
    Adv Mater; 2022 May; 34(20):e2108206. PubMed ID: 34905643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Strategies for Separators in Zinc-Ion Batteries.
    Li L; Jia S; Cheng Z; Zhang C
    ChemSusChem; 2023 Apr; 16(8):e202202330. PubMed ID: 36866862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte Strategies Facilitating Anion-Derived Solid-Electrolyte Interphases for Aqueous Zinc-Metal Batteries.
    Li H; Chen Z; Zheng L; Wang J; Adenusi H; Passerini S; Zhang H
    Small Methods; 2024 Jun; 8(6):e2300554. PubMed ID: 37421218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress of Low-Dimensional Metal-Organic Frameworks for Aqueous Zinc-Based Batteries.
    Xing H; Han Y; Huang X; Zhang C; Lyu M; Chen KJ; Wang T
    Small; 2024 May; ():e2402998. PubMed ID: 38716678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of recent developments in rechargeable lithium-sulfur batteries.
    Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B
    Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolytes in Organic Batteries.
    Li M; Hicks RP; Chen Z; Luo C; Guo J; Wang C; Xu Y
    Chem Rev; 2023 Feb; ():. PubMed ID: 36735935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy.
    Xie J; Lin D; Lei H; Wu S; Li J; Mai W; Wang P; Hong G; Zhang W
    Adv Mater; 2024 Apr; 36(17):e2306508. PubMed ID: 37594442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gifts from Nature: Bio-Inspired Materials for Rechargeable Secondary Batteries.
    Jo CH; Voronina N; Sun YK; Myung ST
    Adv Mater; 2021 Sep; 33(37):e2006019. PubMed ID: 34337779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Insight into the Interfacial Dynamics in "Water-in-Salt" Electrolyte-Based Aqueous Zinc Batteries.
    Wang J; Tian JX; Liu GX; Shen ZZ; Wen R
    Small Methods; 2023 Jun; 7(6):e2300392. PubMed ID: 37186499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress on Zinc-Ion Rechargeable Batteries.
    Xu W; Wang Y
    Nanomicro Lett; 2019 Oct; 11(1):90. PubMed ID: 34138036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries.
    Glatz H; Tervoort E; Kundu D
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3522-3530. PubMed ID: 31887018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms.
    Wang A; Ding R; Li Y; Liu M; Yang F; Zhang Y; Fang Q; Yan M; Xie J; Chen Z; Yan Z; He Y; Guo J; Sun X; Liu E
    Small; 2023 Aug; 19(33):e2302333. PubMed ID: 37166023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Minireview of the Solid-State Electrolytes for Zinc Batteries.
    Yao W; Zheng Z; Zhou J; Liu D; Song J; Zhu Y
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Research Progress into Zinc Ion Battery Solid-Electrolyte Interfaces.
    Li L; Jia S; Cheng Z; Zhang C
    ChemSusChem; 2023 Oct; 16(20):e202300632. PubMed ID: 37312016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries.
    Zhang H; Liu X; Li H; Hasa I; Passerini S
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):598-616. PubMed ID: 32339371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries.
    Liu X; Fan X; Liu B; Ding J; Deng Y; Han X; Zhong C; Hu W
    Adv Mater; 2021 Aug; 33(31):e2006461. PubMed ID: 34050684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.