These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34905657)
1. Role of proline-rich tyrosine kinase 2 (Pyk2) in the pathogenesis of Alzheimer's disease. Kumar R; Tiwari V; Dey S Eur J Neurosci; 2022 Nov; 56(9):5442-5452. PubMed ID: 34905657 [TBL] [Abstract][Full Text] [Related]
2. Pathological Changes of Tau Related to Alzheimer's Disease. Chu D; Liu F ACS Chem Neurosci; 2019 Feb; 10(2):931-944. PubMed ID: 30346708 [TBL] [Abstract][Full Text] [Related]
3. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. Armstrong RA Folia Neuropathol; 2009; 47(4):289-99. PubMed ID: 20054780 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer's disease. Bera A; Lavanya G; Reshmi R; Dev K; Kumar R Eur J Neurosci; 2022 Nov; 56(9):5516-5531. PubMed ID: 35078269 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Giovinazzo D; Bursac B; Sbodio JI; Nalluru S; Vignane T; Snowman AM; Albacarys LM; Sedlak TW; Torregrossa R; Whiteman M; Filipovic MR; Snyder SH; Paul BD Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33431651 [TBL] [Abstract][Full Text] [Related]
6. A{beta} accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Hurtado DE; Molina-Porcel L; Iba M; Aboagye AK; Paul SM; Trojanowski JQ; Lee VM Am J Pathol; 2010 Oct; 177(4):1977-88. PubMed ID: 20802182 [TBL] [Abstract][Full Text] [Related]
7. Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer's disease and related tauopathies. Moore KBE; Hung TJ; Fortin JS Drug Discov Today; 2023 Mar; 28(3):103487. PubMed ID: 36634842 [TBL] [Abstract][Full Text] [Related]
8. Insights into lncRNAs in Alzheimer's disease mechanisms. Li D; Zhang J; Li X; Chen Y; Yu F; Liu Q RNA Biol; 2021 Jul; 18(7):1037-1047. PubMed ID: 32605500 [TBL] [Abstract][Full Text] [Related]
9. The histopathological staging of tau, but not amyloid, corresponds to antemortem cognitive status, dementia stage, functional abilities and neuropsychiatric symptoms. Malpas CB; Sharmin S; Kalincik T Int J Neurosci; 2021 Aug; 131(8):800-809. PubMed ID: 32303140 [TBL] [Abstract][Full Text] [Related]
10. Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation. Ashrafian H; Zadeh EH; Khan RH Int J Biol Macromol; 2021 Jan; 167():382-394. PubMed ID: 33278431 [TBL] [Abstract][Full Text] [Related]
11. From Small Peptides to Large Proteins against Alzheimer'sDisease. Picone P; Sanfilippo T; Vasto S; Baldassano S; Guggino R; Nuzzo D; Bulone D; San Biagio PL; Muscolino E; Monastero R; Dispenza C; Giacomazza D Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291553 [TBL] [Abstract][Full Text] [Related]
12. Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology. Perez-Nievas BG; Stein TD; Tai HC; Dols-Icardo O; Scotton TC; Barroeta-Espar I; Fernandez-Carballo L; de Munain EL; Perez J; Marquie M; Serrano-Pozo A; Frosch MP; Lowe V; Parisi JE; Petersen RC; Ikonomovic MD; López OL; Klunk W; Hyman BT; Gómez-Isla T Brain; 2013 Aug; 136(Pt 8):2510-26. PubMed ID: 23824488 [TBL] [Abstract][Full Text] [Related]
13. Role of PrP(C) Expression in Tau Protein Levels and Phosphorylation in Alzheimer's Disease Evolution. Vergara C; Ordóñez-Gutiérrez L; Wandosell F; Ferrer I; del Río JA; Gavín R Mol Neurobiol; 2015; 51(3):1206-20. PubMed ID: 24965601 [TBL] [Abstract][Full Text] [Related]
14. A possible link between astrocyte activation and tau nitration in Alzheimer's disease. Reyes JF; Reynolds MR; Horowitz PM; Fu Y; Guillozet-Bongaarts AL; Berry R; Binder LI Neurobiol Dis; 2008 Aug; 31(2):198-208. PubMed ID: 18562203 [TBL] [Abstract][Full Text] [Related]
15. Microglia Guo Y; Sun CK; Tang L; Tan MS Curr Alzheimer Res; 2023; 20(10):692-704. PubMed ID: 38321895 [TBL] [Abstract][Full Text] [Related]
16. In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Hall B; Mak E; Cervenka S; Aigbirhio FI; Rowe JB; O'Brien JT Ageing Res Rev; 2017 Jul; 36():50-63. PubMed ID: 28315409 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatic analysis of the SPs and NFTs proteomes unravel putative biomarker candidates for Alzheimer's disease. Ferreira MJC; Soares Martins T; Alves SR; Rosa IM; Vogelgsang J; Hansen N; Wiltfang J; da Cruz E Silva OAB; Vitorino R; Henriques AG Proteomics; 2023 Aug; 23(15):e2200515. PubMed ID: 37062942 [TBL] [Abstract][Full Text] [Related]
18. Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer's disease and track disease progression and cognitive decline. Koss DJ; Jones G; Cranston A; Gardner H; Kanaan NM; Platt B Acta Neuropathol; 2016 Dec; 132(6):875-895. PubMed ID: 27770234 [TBL] [Abstract][Full Text] [Related]
19. Advanced glycation end products in Alzheimer's disease and other neurodegenerative diseases. Sasaki N; Fukatsu R; Tsuzuki K; Hayashi Y; Yoshida T; Fujii N; Koike T; Wakayama I; Yanagihara R; Garruto R; Amano N; Makita Z Am J Pathol; 1998 Oct; 153(4):1149-55. PubMed ID: 9777946 [TBL] [Abstract][Full Text] [Related]
20. Viewpoint: Crosstalks between neurofibrillary tangles and amyloid plaque formation. Luan K; Rosales JL; Lee KY Ageing Res Rev; 2013 Jan; 12(1):174-81. PubMed ID: 22728532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]