These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 34905674)

  • 21. Revisiting the Debate: Does Exercise Build Strong Bones in the Mature and Senescent Skeleton?
    Hughes JM; Charkoudian N; Barnes JN; Morgan BJ
    Front Physiol; 2016; 7():369. PubMed ID: 27679578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?
    Camera DM
    Front Physiol; 2018; 9():569. PubMed ID: 29875682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Irisin in Exercise-Mediated Bone Health.
    Liu L; Guo J; Chen X; Tong X; Xu J; Zou J
    Front Cell Dev Biol; 2021; 9():668759. PubMed ID: 34017836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of exercise-induced preconditioning in skeletal muscles.
    Powers SK; Bomkamp M; Ozdemir M; Hyatt H
    Redox Biol; 2020 Aug; 35():101462. PubMed ID: 32089451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes.
    Laughlin MH
    J Appl Physiol (1985); 2016 Jan; 120(1):1-16. PubMed ID: 26472876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise.
    Cornish SM; Bugera EM; Duhamel TA; Peeler JD; Anderson JE
    Eur J Appl Physiol; 2020 May; 120(5):941-959. PubMed ID: 32144492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. American College of Sports Medicine position stand. Osteoporosis and exercise.
    Med Sci Sports Exerc; 1995 Apr; 27(4):i-vii. PubMed ID: 7791573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure.
    Hambrecht R; Fiehn E; Yu J; Niebauer J; Weigl C; Hilbrich L; Adams V; Riede U; Schuler G
    J Am Coll Cardiol; 1997 Apr; 29(5):1067-73. PubMed ID: 9120161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteoblast response to ovariectomy is enhanced in intrinsically high aerobic-capacity rats.
    Goulet GC; Halonen NR; Koch LG; Britton SL; Zernicke RF; Kozloff KM
    Calcif Tissue Int; 2011 Apr; 88(4):325-35. PubMed ID: 21212941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The benefit of combining non-mechanical agents with mechanical loading: a perspective based on the Utah Paradigm of Skeletal Physiology.
    Jee WS; Tian XY
    J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):110-8. PubMed ID: 15951626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutritional modulation of training-induced skeletal muscle adaptations.
    Hawley JA; Burke LM; Phillips SM; Spriet LL
    J Appl Physiol (1985); 2011 Mar; 110(3):834-45. PubMed ID: 21030665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans.
    Morton JP; Kayani AC; McArdle A; Drust B
    Sports Med; 2009; 39(8):643-62. PubMed ID: 19769414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone adaptation to mechanical loading in a mouse model of reduced peripheral sensory nerve function.
    Heffner MA; Genetos DC; Christiansen BA
    PLoS One; 2017; 12(10):e0187354. PubMed ID: 29088267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation of bone to altered loading environment: a biomechanical approach using X-ray absorptiometric data from the patella of a young woman.
    Sievänen H; Heinonen A; Kannus P
    Bone; 1996 Jul; 19(1):55-9. PubMed ID: 8830989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Physical exercise and the skeleton].
    Barlet JP; Coxam V; Davicco MJ
    Arch Physiol Biochem; 1995 Dec; 103(6):681-98. PubMed ID: 8697002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of nervous system in adaptive response of bone to mechanical loading.
    Qiao Y; Wang Y; Zhou Y; Jiang F; Huang T; Chen L; Lan J; Yang C; Guo Y; Yan S; Wei Z; Li J
    J Cell Physiol; 2019 Jun; 234(6):7771-7780. PubMed ID: 30414185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N-acetyl-4-aminophenol and musculoskeletal adaptations to resistance exercise training.
    Jankowski CM; Gozansky WS; MacLean PS; Shulman B; Wolfe P; Schwartz RS; Kohrt WM
    Eur J Appl Physiol; 2013 May; 113(5):1127-36. PubMed ID: 23108581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.