These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34905857)

  • 1. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters.
    Mayr G; Clarke J
    Cladistics; 2003 Dec; 19(6):527-553. PubMed ID: 34905857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion.
    Livezey BC; Zusi RL
    Zool J Linn Soc; 2007 Jan; 149(1):1-95. PubMed ID: 18784798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic analysis of pelecaniformes (aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies.
    Smith ND
    PLoS One; 2010 Oct; 5(10):e13354. PubMed ID: 20976229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cretaceous ornithurine supports a neognathous crown bird ancestor.
    Benito J; Kuo PC; Widrig KE; Jagt JWM; Field DJ
    Nature; 2022 Dec; 612(7938):100-105. PubMed ID: 36450906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Late Cretaceous neornithine from Europe illuminates the origins of crown birds.
    Field DJ; Benito J; Chen A; Jagt JWM; Ksepka DT
    Nature; 2020 Mar; 579(7799):397-401. PubMed ID: 32188952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing pterosaur ingroup relationships through broader sampling of avemetatarsalian taxa and characters and a range of phylogenetic analysis techniques.
    Baron MG
    PeerJ; 2020; 8():e9604. PubMed ID: 33005485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae).
    Kawahara AY; Ohshima I; Kawakita A; Regier JC; Mitter C; Cummings MP; Davis DR; Wagner DL; De Prins J; Lopez-Vaamonde C
    BMC Evol Biol; 2011 Jun; 11():182. PubMed ID: 21702958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forty new specimens of
    Benito J; Chen A; Wilson LE; Bhullar BS; Burnham D; Field DJ
    PeerJ; 2022; 10():e13919. PubMed ID: 36545383
    [No Abstract]   [Full Text] [Related]  

  • 9. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres).
    Worthy TH; Degrange FJ; Handley WD; Lee MSY
    R Soc Open Sci; 2017 Oct; 4(10):170975. PubMed ID: 29134094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent evolution of strigiform and caprimulgiform dark-activity is supported by phylogenetic analysis using the arylalkylamine N-acetyltransferase (Aanat) gene.
    Fidler AE; Kuhn S; Gwinner E
    Mol Phylogenet Evol; 2004 Dec; 33(3):908-21. PubMed ID: 15522812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early tetrapod relationships revisited.
    Ruta M; Coates MI; Quicke DL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):251-345. PubMed ID: 12803423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling.
    Hill RV
    Syst Biol; 2005 Aug; 54(4):530-47. PubMed ID: 16085573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea.
    Braun K; Leubner F; Stach T
    Cladistics; 2020 Jun; 36(3):259-300. PubMed ID: 34618973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling.
    Reddy S; Kimball RT; Pandey A; Hosner PA; Braun MJ; Hackett SJ; Han KL; Harshman J; Huddleston CJ; Kingston S; Marks BD; Miglia KJ; Moore WS; Sheldon FH; Witt CC; Yuri T; Braun EL
    Syst Biol; 2017 Sep; 66(5):857-879. PubMed ID: 28369655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher Level Phylogeny of Curculionidae (Coleoptera: Curculionoidea) based mainly on Larval Characters, with Special Reference to Broad-Nosed Weevils.
    Marvaldi AE
    Cladistics; 1997 Dec; 13(4):285-312. PubMed ID: 34911227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa.
    Strait DS; Grine FE
    J Hum Evol; 2004 Dec; 47(6):399-452. PubMed ID: 15566946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida).
    Ericson PG; Zuccon D; Ohlson JI; Johansson US; Alvarenga H; Prum RO
    Mol Phylogenet Evol; 2006 Aug; 40(2):471-83. PubMed ID: 16678446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Karyological heterogeneity in the Falconiformes (Aves).
    de Boer LE
    Experientia; 1975 Oct; 31(10):1138-9. PubMed ID: 1204722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-locus phylogenetic inference among New World Vultures (Aves: Cathartidae).
    Johnson JA; Brown JW; Fuchs J; Mindell DP
    Mol Phylogenet Evol; 2016 Dec; 105():193-199. PubMed ID: 27601346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The position of Cetacea within mammalia: phylogenetic analysis of morphological data from extinct and extant taxa.
    O'Leary MA; Geisler JH
    Syst Biol; 1999 Sep; 48(3):455-90. PubMed ID: 12066291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.