These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage. Lidington D; Kroetsch JT; Bolz SS J Cereb Blood Flow Metab; 2018 Jan; 38(1):17-37. PubMed ID: 29135346 [TBL] [Abstract][Full Text] [Related]
6. Increased TRPM4 Activity in Cerebral Artery Myocytes Contributes to Cerebral Blood Flow Reduction After Subarachnoid Hemorrhage in Rats. Gong Y; Du MY; Yu HL; Yang ZY; Li YJ; Zhou L; Mei R; Yang L; Wang F Neurotherapeutics; 2019 Jul; 16(3):901-911. PubMed ID: 31073979 [TBL] [Abstract][Full Text] [Related]
7. Elevated plasma catecholamines functionally compensate for the reduced myogenic tone in smooth muscle STIM1 knockout mice but with deleterious cardiac effects. Pichavaram P; Yin W; Evanson KW; Jaggar JH; Mancarella S Cardiovasc Res; 2018 Apr; 114(5):668-678. PubMed ID: 29360991 [TBL] [Abstract][Full Text] [Related]
9. Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats. Larsen CC; Povlsen GK; Rasmussen MN; Edvinsson L J Neurosurg; 2011 Apr; 114(4):1143-53. PubMed ID: 20597604 [TBL] [Abstract][Full Text] [Related]
10. CFTR Therapeutics Normalize Cerebral Perfusion Deficits in Mouse Models of Heart Failure and Subarachnoid Hemorrhage. Lidington D; Fares JC; Uhl FE; Dinh DD; Kroetsch JT; Sauvé M; Malik FA; Matthes F; Vanherle L; Adel A; Momen A; Zhang H; Aschar-Sobbi R; Foltz WD; Wan H; Sumiyoshi M; Macdonald RL; Husain M; Backx PH; Heximer SP; Meissner A; Bolz SS JACC Basic Transl Sci; 2019 Dec; 4(8):940-958. PubMed ID: 31909302 [TBL] [Abstract][Full Text] [Related]
11. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Ansar S; Larsen C; Maddahi A; Edvinsson L Brain Res; 2010 Feb; 1316():163-72. PubMed ID: 20026315 [TBL] [Abstract][Full Text] [Related]
12. Changes in arterial myocyte excitability induced by subarachnoid hemorrhage in a rat model. Revilla-González G; Ureña J; González-Montelongo MDC; Castellano A Vascul Pharmacol; 2024 Jun; 155():107287. PubMed ID: 38408532 [TBL] [Abstract][Full Text] [Related]
13. Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature. Yamasaki E; Thakore P; Krishnan V; Earley S Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H461-H469. PubMed ID: 31886721 [TBL] [Abstract][Full Text] [Related]
14. Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes. Koide M; Nystoriak MA; Brayden JE; Wellman GC Acta Neurochir Suppl; 2011; 110(Pt 1):145-50. PubMed ID: 21116930 [TBL] [Abstract][Full Text] [Related]
15. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Ishiguro M; Wellman TL; Honda A; Russell SR; Tranmer BI; Wellman GC Circ Res; 2005 Mar; 96(4):419-26. PubMed ID: 15692089 [TBL] [Abstract][Full Text] [Related]
16. The emerging significance of circadian rhythmicity in microvascular resistance. Kroetsch JT; Lidington D; Bolz SS Chronobiol Int; 2022 Apr; 39(4):465-475. PubMed ID: 34915783 [TBL] [Abstract][Full Text] [Related]
17. Cerebrovascular ETB, 5-HT1B, and AT1 receptor upregulation correlates with reduction in regional CBF after subarachnoid hemorrhage. Ansar S; Vikman P; Nielsen M; Edvinsson L Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3750-8. PubMed ID: 17873013 [TBL] [Abstract][Full Text] [Related]
18. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage. Ishiguro M; Puryear CB; Bisson E; Saundry CM; Nathan DJ; Russell SR; Tranmer BI; Wellman GC Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2217-25. PubMed ID: 12388249 [TBL] [Abstract][Full Text] [Related]
19. Genetic interference with peroxisome proliferator-activated receptor γ in smooth muscle enhances myogenic tone in the cerebrovasculature via A Rho kinase-dependent mechanism. De Silva TM; Ketsawatsomkron P; Pelham C; Sigmund CD; Faraci FM Hypertension; 2015 Feb; 65(2):345-51. PubMed ID: 25385762 [TBL] [Abstract][Full Text] [Related]
20. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat. Beg SA; Hansen-Schwartz JA; Vikman PJ; Xu CB; Edvinsson LI J Cereb Blood Flow Metab; 2006 Jun; 26(6):846-56. PubMed ID: 16251886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]