These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 34906223)
1. Proteomic and biochemical responses to different concentrations of CO Wu S; Gu W; Jia S; Wang L; Wang L; Liu X; Zhou L; Huang A; Wang G Biotechnol Biofuels; 2021 Dec; 14(1):235. PubMed ID: 34906223 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic and proteomic responses to very low CO Wei L; El Hajjami M; Shen C; You W; Lu Y; Li J; Jing X; Hu Q; Zhou W; Poetsch A; Xu J Biotechnol Biofuels; 2019; 12():168. PubMed ID: 31297156 [TBL] [Abstract][Full Text] [Related]
3. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Ewe D; Tachibana M; Kikutani S; Gruber A; Río Bártulos C; Konert G; Kaplan A; Matsuda Y; Kroth PG Photosynth Res; 2018 Aug; 137(2):263-280. PubMed ID: 29572588 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom Phaeodactylum tricornutum at low inorganic carbon concentrations. Yu G; Nakajima K; Gruber A; Rio Bartulos C; Schober AF; Lepetit B; Yohannes E; Matsuda Y; Kroth PG New Phytol; 2022 Aug; 235(4):1379-1393. PubMed ID: 35596716 [TBL] [Abstract][Full Text] [Related]
5. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum. Li M; Young JN Photosynth Res; 2023 May; 156(2):205-215. PubMed ID: 36881356 [TBL] [Abstract][Full Text] [Related]
6. Elevated CO Wu S; Gu W; Huang A; Li Y; Kumar M; Lim PE; Huan L; Gao S; Wang G Microb Cell Fact; 2019 Sep; 18(1):161. PubMed ID: 31547820 [TBL] [Abstract][Full Text] [Related]
7. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472 [TBL] [Abstract][Full Text] [Related]
8. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955 [TBL] [Abstract][Full Text] [Related]
9. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. Haimovich-Dayan M; Garfinkel N; Ewe D; Marcus Y; Gruber A; Wagner H; Kroth PG; Kaplan A New Phytol; 2013 Jan; 197(1):177-185. PubMed ID: 23078356 [TBL] [Abstract][Full Text] [Related]
10. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306 [TBL] [Abstract][Full Text] [Related]
11. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. Zhang B; Xie X; Liu X; He L; Sun Y; Wang G BMC Plant Biol; 2020 Sep; 20(1):424. PubMed ID: 32933475 [TBL] [Abstract][Full Text] [Related]
12. The physiology and genetics of CO2 concentrating mechanisms in model diatoms. Hopkinson BM; Dupont CL; Matsuda Y Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267 [TBL] [Abstract][Full Text] [Related]
13. Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration. Wu S; Huang A; Zhang B; Huan L; Zhao P; Lin A; Wang G Biotechnol Biofuels; 2015; 8():78. PubMed ID: 26052345 [TBL] [Abstract][Full Text] [Related]
14. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum. Hopkinson BM Photosynth Res; 2014 Sep; 121(2-3):223-33. PubMed ID: 24292858 [TBL] [Abstract][Full Text] [Related]
15. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO Huang A; Wu S; Gu W; Li Y; Xie X; Wang G BMC Biotechnol; 2019 Jul; 19(1):53. PubMed ID: 31349823 [TBL] [Abstract][Full Text] [Related]
16. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. Alipanah L; Rohloff J; Winge P; Bones AM; Brembu T J Exp Bot; 2015 Oct; 66(20):6281-96. PubMed ID: 26163699 [TBL] [Abstract][Full Text] [Related]
17. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. Tsuji Y; Nakajima K; Matsuda Y J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304 [TBL] [Abstract][Full Text] [Related]
18. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. Clement R; Dimnet L; Maberly SC; Gontero B New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678 [TBL] [Abstract][Full Text] [Related]
19. Metabolic flux ratio analysis and cell staining suggest the existence of C4 photosynthesis in Phaeodactylum tricornutum. Huang A; Liu L; Zhao P; Yang C; Wang GC J Appl Microbiol; 2016 Mar; 120(3):705-13. PubMed ID: 26661799 [TBL] [Abstract][Full Text] [Related]
20. Phaeodactylum tricornutum photorespiration takes part in glycerol metabolism and is important for nitrogen-limited response. Huang A; Liu L; Yang C; Wang G Biotechnol Biofuels; 2015; 8():73. PubMed ID: 25960767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]