BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34906509)

  • 1. Correspondence on "Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype" by Zanoni et al.
    Cueto-González AM; Fernández-Álvarez P; Palafoll IV; Lasa-Aranzasti A; Vendrell Bayona T; Tizzano EF
    Genet Med; 2022 Mar; 24(3):754-756. PubMed ID: 34906509
    [No Abstract]   [Full Text] [Related]  

  • 2. Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype.
    Zanoni P; Steindl K; Sengupta D; Joset P; Bahr A; Sticht H; Lang-Muritano M; van Ravenswaaij-Arts CMA; Shinawi M; Andrews M; Attie-Bitach T; Maystadt I; Belnap N; Benoit V; Delplancq G; de Vries BBA; Grotto S; Lacombe D; Larson A; Mourmans J; Õunap K; Petrilli G; Pfundt R; Ramsey K; Blok LS; Tsatsaris V; Vitobello A; Faivre L; Wheeler PG; Wevers MR; Wojcik M; Zweier M; Gozani O; Rauch A
    Genet Med; 2021 Aug; 23(8):1474-1483. PubMed ID: 33941880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first familial NSD2 cases with a novel variant in a Chinese father and daughter with atypical WHS facial features and a 7.5-year follow-up of growth hormone therapy.
    Hu X; Wu D; Li Y; Wei L; Li X; Qin M; Li H; Li M; Chen S; Gong C; Shen Y
    BMC Med Genomics; 2020 Dec; 13(1):181. PubMed ID: 33276791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo loss-of-function variants in
    Barrie ES; Alfaro MP; Pfau RB; Goff MJ; McBride KL; Manickam K; Zmuda EJ
    Cold Spring Harb Mol Case Stud; 2019 Aug; 5(4):. PubMed ID: 31171569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The constitutional gain-of-function variant p.Glu1099Lys in NSD2 is associated with a novel syndrome.
    Popp B; Brugger M; Poschmann S; Bartolomaeus T; Radtke M; Hentschel J; Di Donato N; Rump A; Gburek-Augustat J; Graf E; Wagner M; Sorge I; Lemke JR; Meitinger T; Abou Jamra R; Strehlow V; Brunet T
    Clin Genet; 2023 Feb; 103(2):226-230. PubMed ID: 36189577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome.
    Nimura K; Ura K; Shiratori H; Ikawa M; Okabe M; Schwartz RJ; Kaneda Y
    Nature; 2009 Jul; 460(7252):287-91. PubMed ID: 19483677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo nonsense mutation in WHSC1 (NSD2) in patient with intellectual disability and dysmorphic features.
    Lozier ER; Konovalov FA; Kanivets IV; Pyankov DV; Koshkin PA; Baleva LS; Sipyagina AE; Yakusheva EN; Kuchina AE; Korostelev SA
    J Hum Genet; 2018 Jul; 63(8):919-922. PubMed ID: 29760529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the Wolf-Hirschhorn syndrome phenotype: WHSC1 is a neurodevelopmental gene contributing to growth delay, intellectual disability, and to the facial dysmorphism.
    Zollino M; Doronzio PN
    J Hum Genet; 2018 Aug; 63(8):859-861. PubMed ID: 29884796
    [No Abstract]   [Full Text] [Related]  

  • 9. Wolf-Hirschhorn Syndrome Candidate 1 (whsc1) Functions as a Tumor Suppressor by Governing Cell Differentiation.
    Yu C; Yao X; Zhao L; Wang P; Zhang Q; Zhao C; Yao S; Wei Y
    Neoplasia; 2017 Aug; 19(8):606-616. PubMed ID: 28654864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory hair cell defects as potential cause for sensorineural deafness in Wolf-Hirschhorn syndrome.
    Ahmed M; Ura K; Streit A
    Dis Model Mech; 2015 Sep; 8(9):1027-35. PubMed ID: 26092122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo truncating variants in WHSC1 recapitulate the Wolf-Hirschhorn (4p16.3 microdeletion) syndrome phenotype.
    Derar N; Al-Hassnan ZN; Al-Owain M; Monies D; Abouelhoda M; Meyer BF; Moghrabi N; Alkuraya FS
    Genet Med; 2019 Jan; 21(1):185-188. PubMed ID: 29892088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 109 kb deletion of chromosome 4p16.3 in a patient with mild phenotype of Wolf-Hirschhorn syndrome.
    Okamoto N; Ohmachi K; Shimada S; Shimojima K; Yamamoto T
    Am J Med Genet A; 2013 Jun; 161A(6):1465-9. PubMed ID: 23637096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical utility gene card for: Wolf-Hirschhorn (4p-) syndrome.
    Battaglia A; South S; Carey JC
    Eur J Hum Genet; 2011 Apr; 19(4):. PubMed ID: 21150881
    [No Abstract]   [Full Text] [Related]  

  • 14. Interstitial microdeletion of 4p16.3: contribution of WHSC1 haploinsufficiency to the pathogenesis of developmental delay in Wolf-Hirschhorn syndrome.
    Izumi K; Okuno H; Maeyama K; Sato S; Yamamoto T; Torii C; Kosaki R; Takahashi T; Kosaki K
    Am J Med Genet A; 2010 Apr; 152A(4):1028-32. PubMed ID: 20358621
    [No Abstract]   [Full Text] [Related]  

  • 15. A microdeletion proximal of the critical deletion region is associated with mild Wolf-Hirschhorn syndrome.
    Hannes F; Hammond P; Quarrell O; Fryns JP; Devriendt K; Vermeesch JR
    Am J Med Genet A; 2012 May; 158A(5):996-1004. PubMed ID: 22438245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome.
    Andersen EF; Carey JC; Earl DL; Corzo D; Suttie M; Hammond P; South ST
    Eur J Hum Genet; 2014 Apr; 22(4):464-70. PubMed ID: 23963300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wolf-Hirschhorn syndrome facial dysmorphic features in a patient with a terminal 4p16.3 deletion telomeric to the WHSCR and WHSCR 2 regions.
    Engbers H; van der Smagt JJ; van 't Slot R; Vermeesch JR; Hochstenbach R; Poot M
    Eur J Hum Genet; 2009 Jan; 17(1):129-32. PubMed ID: 18830230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia.
    Swaroop A; Oyer JA; Will CM; Huang X; Yu W; Troche C; Bulic M; Durham BH; Wen QJ; Crispino JD; MacKerell AD; Bennett RL; Kelleher NL; Licht JD
    Oncogene; 2019 Jan; 38(5):671-686. PubMed ID: 30171259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scalable Platform for Producing Recombinant Nucleosomes with Codified Histone Methyltransferase Substrate Preferences.
    McDevitt PJ; Schneck JL; Diaz E; Hou W; Huddleston MJ; Matico RE; McCormick PM; Kirkpatrick RB
    Protein Expr Purif; 2019 Dec; 164():105455. PubMed ID: 31306746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of the zebrafish WHSC1-related gene, a homolog of human NSD2.
    Yamada-Okabe T; Imamura K; Kawaguchi N; Sakai H; Yamashita M; Matsumoto N
    Biochem Biophys Res Commun; 2010 Nov; 402(2):335-9. PubMed ID: 20946879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.