These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34906546)

  • 1. Yolk platelets impede nuclear expansion in Xenopus embryos.
    Shimogama S; Iwao Y; Hara Y
    Dev Biol; 2022 Feb; 482():101-113. PubMed ID: 34906546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of endoplasmic reticulum in rapidly dividing cells of early Xenopus embryos.
    Manuel Dominguez J; Paiement J
    Am J Anat; 1989 Sep; 186(1):99-113. PubMed ID: 2782291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos.
    Mukherjee RN; Sallé J; Dmitrieff S; Nelson KM; Oakey J; Minc N; Levy DL
    Dev Cell; 2020 Aug; 54(3):395-409.e7. PubMed ID: 32473090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytological effects of the microinjection of antibody to ras p21 in early cleavage Xenopus embryos.
    Miron MJ; Lanoix J; Paiement J
    Mol Reprod Dev; 1990 Apr; 25(4):317-27. PubMed ID: 2183830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in Xenopus laevis.
    Wang P; Hayden S; Masui Y
    J Exp Zool; 2000 Jul; 287(2):128-44. PubMed ID: 10900432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos.
    Iwao Y; Uchida Y; Ueno S; Yoshizaki N; Masui Y
    Dev Growth Differ; 2005 Jun; 47(5):283-94. PubMed ID: 16026537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asters play only a dispensable role in the induction of the cleavage furrow in the blastomeres of early Xenopus embryos.
    Sakaida T; Inomata S; Shinagawa A
    Dev Growth Differ; 2004 Aug; 46(4):371-81. PubMed ID: 15367205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.
    Sun L; Dubiak KM; Peuchen EH; Zhang Z; Zhu G; Huber PW; Dovichi NJ
    Anal Chem; 2016 Jul; 88(13):6653-7. PubMed ID: 27314579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing.
    Jevtić P; Levy DL
    Curr Biol; 2015 Jan; 25(1):45-52. PubMed ID: 25484296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear sizER in Early Development.
    Chen H; Good MC
    Dev Cell; 2020 Aug; 54(3):297-298. PubMed ID: 32781022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cPKC regulates interphase nuclear size during Xenopus development.
    Edens LJ; Levy DL
    J Cell Biol; 2014 Aug; 206(4):473-83. PubMed ID: 25135933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in yolk platelet pH during Xenopus laevis development correlate with yolk utilization. A quantitative confocal microscopy study.
    Fagotto F; Maxfield FR
    J Cell Sci; 1994 Dec; 107 ( Pt 12)():3325-37. PubMed ID: 7706389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size Scaling of Microtubule Assemblies in Early Xenopus Embryos.
    Mitchison TJ; Ishihara K; Nguyen P; Wühr M
    Cold Spring Harb Perspect Biol; 2015 Aug; 7(10):a019182. PubMed ID: 26261283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell proliferation in the ectoderm of the Xenopus embryo: development of substratum requirements for cytokinesis.
    Winklbauer R
    Dev Biol; 1986 Nov; 118(1):70-81. PubMed ID: 3770308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern regulation in defect embryos of Xenopus laevis.
    Kageura H; Yamana K
    Dev Biol; 1984 Feb; 101(2):410-5. PubMed ID: 6692985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE; Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development.
    Lane JD; Allan VJ
    Mol Biol Cell; 1999 Jun; 10(6):1909-22. PubMed ID: 10359605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cell-Free Assay Using Xenopus laevis Embryo Extracts to Study Mechanisms of Nuclear Size Regulation.
    Edens LJ; Levy DL
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc uptake and distribution in Xenopus laevis oocytes and embryos.
    Falchuk KH; Montorzi M; Vallee BL
    Biochemistry; 1995 Dec; 34(50):16524-31. PubMed ID: 8845382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early intrauterine embryonic development of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost Merluccius merluccius (L., 1758) (Gadiformes: Merlucciidae).
    Swiderski Z; Miquel J; Torres J; Delgado E
    C R Biol; 2013 Jul; 336(7):321-30. PubMed ID: 23932252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.