These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 34906587)
1. Cleanup of oiled shorelines using a dual responsive nanoclay/sodium alginate surface washing agent. Yue R; An C; Ye Z; Bi H; Chen Z; Liu X; Zhang X; Lee K Environ Res; 2022 Apr; 205():112531. PubMed ID: 34906587 [TBL] [Abstract][Full Text] [Related]
2. A green initiative for oiled sand cleanup using chitosan/rhamnolipid complex dispersion with pH-stimulus response. Chen Z; An C; Wang Y; Zhang B; Tian X; Lee K Chemosphere; 2022 Feb; 288(Pt 3):132628. PubMed ID: 34687682 [TBL] [Abstract][Full Text] [Related]
3. Investigation into the oil removal from sand using a surface washing agent under different environmental conditions. Bi H; An C; Chen X; Owens E; Lee K J Environ Manage; 2020 Dec; 275():111232. PubMed ID: 32829266 [TBL] [Abstract][Full Text] [Related]
4. Exploring the glycoprotein washing fluid-assisted cleanup for the restoration of oil-contaminated shorelines with environmental integrity. Sui J; Yue R; Bi H; Fu H; Yang A; Wang M; An C Sci Total Environ; 2024 Nov; 953():176165. PubMed ID: 39260515 [TBL] [Abstract][Full Text] [Related]
5. Experimental and modeling studies of the effects of nanoclay on the oil behaviors in a water-sand system. Iravani R; An C; Mohammadi M; Lee K; Zhang K Environ Sci Pollut Res Int; 2022 Jul; 29(33):50540-50551. PubMed ID: 35233669 [TBL] [Abstract][Full Text] [Related]
6. Exploring the use of cellulose nanocrystal as surface-washing agent for oiled shoreline cleanup. Chen Z; An C; Yin J; Owens E; Lee K; Zhang K; Tian X J Hazard Mater; 2021 Jan; 402():123464. PubMed ID: 32693337 [TBL] [Abstract][Full Text] [Related]
7. Exploring the use of sodium caseinate-assisted responsive separation for the treatment of washing effluents in shoreline oil spill response. Yue R; Ye Z; Gao S; Cao Y; Lee K; An C; Qu Z; Wan S Sci Total Environ; 2023 May; 873():162363. PubMed ID: 36828076 [TBL] [Abstract][Full Text] [Related]
8. Exploring the characteristics, performance, and mechanisms of a magnetic-mediated washing fluid for the cleanup of oiled beach sand. Yue R; An C; Ye Z; Chen X; Lee K; Zhang K; Wan S; Qu Z J Hazard Mater; 2022 Sep; 438():129447. PubMed ID: 35780732 [TBL] [Abstract][Full Text] [Related]
9. Exploring the use of alginate hydrogel coating as a new initiative for emergent shoreline oiling prevention. Bi H; An C; Mulligan CN; Wang Z; Zhang B; Lee K Sci Total Environ; 2021 Nov; 797():149234. PubMed ID: 34346356 [TBL] [Abstract][Full Text] [Related]
10. Development of a calcium alginate-cellulose nanocrystal-based coating to reduce the impact of oil spills on shorelines. Bi H; Mulligan CN; An C; Owens E; Taylor E; McCourt J; Yin J; Feng Q; Chen X; Yue R J Hazard Mater; 2022 Aug; 436():129228. PubMed ID: 35739748 [TBL] [Abstract][Full Text] [Related]
11. Optimization of washing conditions with biogenic mobilizing agents for marine fuel-contaminated beach sands. Arelli A; Nuzzo A; Sabia C; Banat IM; Zanaroli G; Fava F N Biotechnol; 2018 Jul; 43():13-22. PubMed ID: 29288741 [TBL] [Abstract][Full Text] [Related]
12. A solar-heated antibacterial sodium alginate aerogel for highly efficient cleanup of viscous oil spills. Chen X; Yang Y; Guan Y; Luo C; Bao M; Li Y J Colloid Interface Sci; 2022 Sep; 621():241-253. PubMed ID: 35461139 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characteristics, and performance of the microemulsion system in the removal of oil from beach sand. Bi H; Mulligan CN; Lee K; An C; Wen J; Yang X; Lyu L; Qu Z Mar Pollut Bull; 2023 Aug; 193():115234. PubMed ID: 37399736 [TBL] [Abstract][Full Text] [Related]
14. A framework for the evaluation and selection of shoreline surface washing agents in oil spill response. Bi H; An C; Owens E; Lee K; Chen Z; Mulligan C; Taylor E; Boufadel M J Environ Manage; 2021 Jun; 287():112346. PubMed ID: 33756213 [TBL] [Abstract][Full Text] [Related]
15. Stability and photo demulsification of oil-in-seawater Pickering emulsion based on Fe Xiong C; Cao X; Zhao X; Yang S; Huang J; Feng Y; Yu G; Li J Carbohydr Polym; 2022 Aug; 289():119399. PubMed ID: 35483829 [TBL] [Abstract][Full Text] [Related]
16. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery. Zengel S; Bernik BM; Rutherford N; Nixon Z; Michel J PLoS One; 2015; 10(7):e0132324. PubMed ID: 26200349 [TBL] [Abstract][Full Text] [Related]
17. Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA. Michel J; Owens EH; Zengel S; Graham A; Nixon Z; Allard T; Holton W; Reimer PD; Lamarche A; White M; Rutherford N; Childs C; Mauseth G; Challenger G; Taylor E PLoS One; 2013; 8(6):e65087. PubMed ID: 23776444 [TBL] [Abstract][Full Text] [Related]
18. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data. Khanna S; Santos MJ; Ustin SL; Koltunov A; Kokaly RF; Roberts DA PLoS One; 2013; 8(11):e78989. PubMed ID: 24223872 [TBL] [Abstract][Full Text] [Related]
19. A pH-responsive phosphoprotein washing fluid for the removal of phenanthrene from contaminated peat moss in the cold region. Yue R; An C; Ye Z; Li X; Li Q; Zhang P; Qu Z; Wan S Chemosphere; 2023 Feb; 313():137389. PubMed ID: 36455665 [TBL] [Abstract][Full Text] [Related]
20. Alginate-oil gelator composite foam for effective oil spill treatment. Wang Y; Yu X; Fan W; Liu R; Liu Y Carbohydr Polym; 2022 Oct; 294():119755. PubMed ID: 35868745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]