BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 34906599)

  • 21. Ectopic activation of Wnt/β-catenin signaling in lens fiber cells results in cataract formation and aberrant fiber cell differentiation.
    Antosova B; Smolikova J; Borkovcova R; Strnad H; Lachova J; Machon O; Kozmik Z
    PLoS One; 2013; 8(10):e78279. PubMed ID: 24205179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins.
    Schey KL; Wang Z; Friedrich MG; Garland DL; Truscott RJW
    Prog Retin Eye Res; 2020 May; 76():100802. PubMed ID: 31704338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CELF1 promotes matrix metalloproteinases gene expression at transcriptional level in lens epithelial cells.
    Xiao J; Tian X; Jin S; He Y; Song M; Zou H
    BMC Ophthalmol; 2022 Mar; 22(1):122. PubMed ID: 35287612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity.
    Bhat SP; Gangalum RK; Kim D; Mangul S; Kashyap RK; Zhou X; Elashoff D
    J Biol Chem; 2019 Sep; 294(37):13530-13544. PubMed ID: 31243103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation.
    Brennan L; Disatham J; Menko AS; Kantorow M
    Dev Biol; 2023 Dec; 504():25-37. PubMed ID: 37722500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens.
    Cvekl A; Yang Y; Chauhan BK; Cveklova K
    Int J Dev Biol; 2004; 48(8-9):829-44. PubMed ID: 15558475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development.
    Posner M; Skiba J; Brown M; Liang JO; Nussbaum J; Prior H
    Exp Eye Res; 2013 Nov; 116():227-33. PubMed ID: 24076322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation.
    He S; Limi S; McGreal RS; Xie Q; Brennan LA; Kantorow WL; Kokavec J; Majumdar R; Hou H; Edelmann W; Liu W; Ashery-Padan R; Zavadil J; Kantorow M; Skoultchi AI; Stopka T; Cvekl A
    Development; 2016 Jun; 143(11):1937-47. PubMed ID: 27246713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7.
    Anand D; Al Saai S; Shrestha SK; Barnum CE; Chuma S; Lachke SA
    Front Cell Dev Biol; 2021; 9():615761. PubMed ID: 33665188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transgenic expression of AQP1 in the fiber cells of AQP0 knockout mouse: effects on lens transparency.
    Varadaraj K; Kumari SS; Mathias RT
    Exp Eye Res; 2010 Sep; 91(3):393-404. PubMed ID: 20599966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery.
    Anand D; Kakrana A; Siddam AD; Huang H; Saadi I; Lachke SA
    Hum Genet; 2018 Dec; 137(11-12):941-954. PubMed ID: 30417254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis.
    Mou L; Xu JY; Li W; Lei X; Wu Y; Xu G; Kong X; Xu GT
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):396-404. PubMed ID: 19628735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators.
    Sun J; Rockowitz S; Chauss D; Wang P; Kantorow M; Zheng D; Cvekl A
    Mol Vis; 2015; 21():955-73. PubMed ID: 26330747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional analysis of the Hsf4(lop11) allele responsible for cataracts in lop11 mice.
    Liang L; Liegel R; Endres B; Ronchetti A; Chang B; Sidjanin DJ
    Mol Vis; 2011; 17():3062-71. PubMed ID: 22162625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autophagy and mitophagy participate in ocular lens organelle degradation.
    Costello MJ; Brennan LA; Basu S; Chauss D; Mohamed A; Gilliland KO; Johnsen S; Menko S; Kantorow M
    Exp Eye Res; 2013 Nov; 116():141-50. PubMed ID: 24012988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CELF1 Selectively Regulates Alternative Splicing of DNA Repair Genes Associated With Cataract in Human Lens Cell Line.
    Xiao J; Jin S; Wang X; Huang J; Zou H
    Biochem Genet; 2023 Aug; 61(4):1319-1333. PubMed ID: 36585568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lens cytoskeleton and transparency: a model.
    Clark JI; Matsushima H; David LL; Clark JM
    Eye (Lond); 1999 Jun; 13 ( Pt 3b)():417-24. PubMed ID: 10627819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and functional clustering of global gene expression differences between human age-related cataract and clear lenses.
    Hawse JR; Hejtmancik JF; Huang Q; Sheets NL; Hosack DA; Lempicki RA; Horwitz J; Kantorow M
    Mol Vis; 2003 Oct; 9():515-37. PubMed ID: 14551530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein posttranslational modification (PTM) by glycation: Role in lens aging and age-related cataractogenesis.
    Fan X; Monnier VM
    Exp Eye Res; 2021 Sep; 210():108705. PubMed ID: 34297945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components.
    Dash S; Siddam AD; Barnum CE; Janga SC; Lachke SA
    Wiley Interdiscip Rev RNA; 2016 Jul; 7(4):527-57. PubMed ID: 27133484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.